Advertisement

New Strategies to Increase Magnetic Resonance Imaging Sensitivity in Detecting Individual Multiple Sclerosis Lesions and Short-term Disease Activity: Perspectives for Future Clinical Trials

  • M. Filippi
Conference paper
Part of the Topics in Neuroscience book series (TOPNEURO)

Abstract

Monthly magnetic resonance imaging (MRI) scans of the brain have been widely used to monitor the short-term evolution of multiple sclerosis (MS), either natural or modified by treatment. The number of new or enlarged lesions on serial unenhanced dual-echo conventional spin echo (CSE) scans, the number of total or new enhancing lesions on serial T1-weighted scans obtained five minutes after the injection of 0.1 mmol/kg gadolinium-DTPA (Gd), and the numbers of “active” scans (i.e. scans with at least one of the above-mentioned lesions) are the main primary endpoint measures used to monitor the efficacy of treatment in preliminary trials.

Keywords

Multiple Sclerosis Magnetization Transfer Multiple Sclerosis Lesion Magnetization Transfer Ratio Enhance Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miller DH, Albert PS, Barkhof F, et al. (1996) Guidelines for the use of magnetic resonance techniques in monitoring the treatment of multiple sclerosis. Ann Neurol 39:6–16PubMedCrossRefGoogle Scholar
  2. 2.
    Filippi M, Miller DH (1996) MRI in the differential diagnosis and monitoring the treatment of multiple sclerosis. Curr Opin Neurol 9: 176–186CrossRefGoogle Scholar
  3. 3.
    Barkhof F, Filippi M, Miller DH, et al. (1997) Strategies for optimizing MRI techniques aimed at monitoring disease activity in multiple sclerosis. J Neurol 244: 76–84PubMedCrossRefGoogle Scholar
  4. 4.
    McFarland HF, Frank JA, Albert PS, et al. (1992) Using gadolinium-enhanced magnetic resonance imaging to monitor disease activity in multiple sclerosis. Ann Neurol 32: 758–766PubMedCrossRefGoogle Scholar
  5. 5.
    Nauta JJP, Thompson AJ, Barkhof F, Miller DH (1994) Magnetic resonance imaging in monitoring the treatment of multiple sclerosis patients: Statistical power of parallelgroups and crossover designs. J Neurol Sci 122: 6–14PubMedCrossRefGoogle Scholar
  6. 6.
    Katz D, Taubenberger JK, Cannella B, et al. (1993) Correlation between magnetic resonance imaging findings and lesion development in multiple sclerosis. Ann Neurol 34: 661–669PubMedCrossRefGoogle Scholar
  7. 7.
    Rieckmann P, Albrecht M, Kitze B, et al. (1995) Tumor necrosis factor-alpha messenger RNA expression in patients with relapsing-remitting multiple sclerosis is associated with disease activity. Ann Neurol 37: 82–88PubMedCrossRefGoogle Scholar
  8. 8.
    Hartung HP, Reiners K, Archelos JJ, et al. (1995) Circulating adhesion molecules and tumor necrosis factor receptor in multiple sclerosis: Correlation with magnetic resonance imaging. Ann Neurol 38: 186–193PubMedCrossRefGoogle Scholar
  9. 9.
    Martino G, Filippi M, Martinelli V, et al. (1996) Clinical and radiological correlates of a novel T lymphocyte gamma-interferon-activated Ca2+ influx in patients with relapsing-remitting multiple sclerosis. Neurology 46: 1416–1421PubMedCrossRefGoogle Scholar
  10. 10.
    Rieckmann P, Altenhofen B, Riegel A, et al. (1997) Soluble adhesion molecules (sVCAM-1 and sICAM-1) in cerebrospinal fluid and serum correlate with MRI activity in multiple sclerosis. Ann Neurol 41: 326–333PubMedCrossRefGoogle Scholar
  11. 11.
    Youl BD, Turano G, Miller DH, et al. (1991) The pathophysiology of acute optic neuritis. An association of gadolinium leakage with clinical and electrophysiological deficits. Brain 114: 2437–2450PubMedCrossRefGoogle Scholar
  12. 12.
    Barkhof F, Filippi M, van Waesberghe JH, et al. (1997) Improving interobserver variation in reporting gadolinium-enhanced MRI lesions in multiple sclerosis. Neurology 49: 1682–1688PubMedCrossRefGoogle Scholar
  13. 13.
    Thorpe JW, Halpin SF, MacManus DG, et al. (1994) A comparison between fast and conventional spin-echo in the detection of multiple sclerosis lesions. Neuroradiology 36: 388–392PubMedCrossRefGoogle Scholar
  14. 14.
    Yousry TA, Filippi M, Becker C, et al. (1997) Comparison of SE, FSE, fast-FLAIR and TGSE sequences in detecting multiple sclerosis lesions. AJNR Am J Neuroradiol 18: 959–963PubMedGoogle Scholar
  15. 15.
    Bastianello S, Bozzao A, Paolillo A, et al. (1997) Fast spin-echo and fast fluid-attenuated inversion-recovery versus conventional spin-echo sequences for MR quantification of multiple sclerosis lesions. AJNR Am J Neuroradiol 18: 699–704PubMedGoogle Scholar
  16. 16.
    Filippi M, Mastronardo G, Bastianello S, et al. (1998) A longitudinal brain MRI study comparing the sensitivities of the conventional and a newer approch for detecting active lesions in multiple sclerosis. J Neurol Sci 159: 94–101PubMedCrossRefGoogle Scholar
  17. 17.
    Filippi M, Yousry T, Baratti C, et al. (1996) Quantitative assessment of MRI lesion load in multiple sclerosis: A comparison of conventional spin-echo with fast-fluid-attenuated inversion recovery. Brain 119: 1349–1355PubMedCrossRefGoogle Scholar
  18. 18.
    Rydberg JN, Hammond CA, Grimm RC, et al. (1994) Initial experience in MR imaging of the brain with a fast fluid-attenuated inversion-recovery pulse sequence. Radiology 93: 173–180CrossRefGoogle Scholar
  19. 19.
    Hashemi RH, Bradley WG, Chen DY, et al. (1995) Suspected multiple sclerosis: MR imaging with a thin-section fast FLAIR pulse sequence. Radiology 196: 505–510PubMedCrossRefGoogle Scholar
  20. 20.
    Stevenson VL, Gawne-Cain ML, Barker GJ, et al. (1997) Imaging of the spinal cord and brain in multiple sclerosis: A comparative study between fast FLAIR and fast spinecho. J Neurol 244:119–124PubMedCrossRefGoogle Scholar
  21. 21.
    Gawne-Cain ML, O’Riordan JI, Thompson AJ, et al. (1997) Multiple sclerosis lesion detection in the brain: A comparison of fast fluid attenuated inversion recovery and conventional T2 weighted dual spin echo. Neurology 49: 364–370PubMedCrossRefGoogle Scholar
  22. 22.
    Miller DH, Barkhof F, Nauta JJP (1993) Gadolinium enhancement increased the sensitivity of MRI in detecting disease activity in MS. Brain 116: 1077–1094PubMedCrossRefGoogle Scholar
  23. 23.
    Filippi M, Rocca MA, Gasperini C, et al. (1998) Inter-scanner variation in brain MRI lesion load measuraments in MS using CSE, RARE and fast-FLAIR. J Neurol 245: 305–313CrossRefGoogle Scholar
  24. 24.
    Filippi M, Yousry TA, Alkadhi H, et al. (1996) Spinal cord MRI in multiple sclerosis with multicoil arrays: A comparison between fast spin echo and fast FLAIR. J Neurol Neurosurg Psychiatry 61: 632–635PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Keiper MD, Grossman RI, Brunson JC, Schnall MD (1997) The low sensitivity of fluid attenuated inversion recovery (FLAIR) imaging in the detection of multiple sclerosis of the spinal cord. AJNR Am J Neuroradiol 18: 1035–1039PubMedGoogle Scholar
  26. 26.
    Lai M, Hodgson T, Gawne-Cain M, et al. (1996) A preliminary study into the sensitivity of disease activity detection by serial weekly magnetic resonance imaging in multiple sclerosis. J Neurol Neurosurg Psychiatry 60: 339–341PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Thorpe JW, Kidd D, Moseley IF, et al. (1996) Serial gadolinium-enhanced MRI of the brain and spinal cord in early relapsing-remitting multiple sclerosis. Neurology 46: 373–378PubMedCrossRefGoogle Scholar
  28. 28.
    Filippi M, Yousry T, Rocca MA, et al. (1997) Sensitivity of delayed gadolinium-enhanced MRI in multiple sclerosis. Acta Neurol Scand 95: 331–334PubMedCrossRefGoogle Scholar
  29. 29.
    Filippi M, Campi A, Martinelli V, et al. (1995) Comparison of triple dose versus standard dose gadolinium-DTPA for detection of MRI enhancing lesions in patients with primary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 59:540–544PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Filippi M, Capra R, Campi A, et al. (1996) Triple dose of gadolinium-DTPA and delayed MRI in patients with benign multiple sclerosis. J Neurol Neurosurg Psychiatry 60:526–530PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Filippi M, Yousry T, Campi A, et al. (1996) Comparison of triple dose versus standard dose gadolinium-DTPA for detection of MRI enhancing lesions in patients with MS. Neurology 46: 379–384PubMedCrossRefGoogle Scholar
  32. 32.
    Filippi M, Yousry T, Horsfield MA, et al. (1996) A high-resolution three-dimensional gradient echo sequence improves the detection of disease activity in multiple sclerosis. Ann Neurol 40: 901–907PubMedCrossRefGoogle Scholar
  33. 33.
    Filippi M, Barkhof F, Bressi S, et al. (1997) Inter-rater variability in reporting enhancing lesions on standard and triple dose gadolinium scans in patients with multiple sclerosis. Mult Scler 3: 226–230PubMedCrossRefGoogle Scholar
  34. 34.
    Silver NC, Good CD, Barker GJ, et al. (1997) Sensitivity of contrast enhanced MRI in multiple sclerosis: Effects of gadolinium dose, magnetisation transfer contrast and delayed imaging. Brain 120: 1149–1161PubMedCrossRefGoogle Scholar
  35. 35.
    Filippi M, Rovaris M, Capra R, et al. (1998) A multicentre longitudinal study comparing the sensitivity of monthly MRI after standard and triple dose gadolinium-DTPA for monitoring disease activity in multiple sclerosis: Implication for clinical trials. Brain 121:2011–2020PubMedCrossRefGoogle Scholar
  36. 36.
    Filippi M, Horsfield MA, Hajnal JV, et al. (1998) Quantitative assessment of magnetic resonance imaging lesion load in multiple sclerosis. J Neurol Neurosurg Psychiatry 64 (Suppl 1): S88–S93PubMedGoogle Scholar
  37. 37.
    Metha RC, Pike BG, Enzmann DR (1995) Improved detection of enhancing and nonenhancing lesions of multiple sclerosis with magnetization transfer. AJNR Am J Neuroradiol 16: 1771–1778Google Scholar
  38. 38.
    van Waesberghe JHTM, Castelijns JA, Roser W, et al. (1997) Single dose gadolinium with magnetization transfer contrast versus triple dose gadolinium in detecting enhancing multiple sclerosis lesions. AJNR Am J Neuroradiol 18: 1279–1285PubMedGoogle Scholar
  39. 39.
    Gasperini C, Bastianello S, Pozzilli C, et al. (1997) A multicentre study comparing the sensitivity of T1-weighted images with and without magnetization transfer after the injection of standard and triple dose of gadolinium in detecting enhancing lesions in MS. J Neurol 244(Suppl 3): S24 (abstract)Google Scholar
  40. 40.
    McDonald WI, Miller DH, Barnes D (1992) The pathological evolution of multiple sclerosis. Neuropathol Appl Neurobiol 18: 319–334PubMedCrossRefGoogle Scholar
  41. 41.
    Calabresi P, Stone LA, Bash CN, et al. (1997) Interferon beta results in immediate reduction of contrast-enhanced MRI lesions in multiple sclerosis patients followed by weekly MRI. Neurology 48: 1446–1448PubMedCrossRefGoogle Scholar
  42. 42.
    Filippi M, Rovaris M, Capra R, et al. (1998) Serial standard and triple dose MRI to monitor the effect of interferon β-la on multiple sclerosis activity. Neurology 50(Suppl 4): A323Google Scholar
  43. 43.
    Filippi M (1998) The role of non-conventional magnetic resonance tecnique monitoring evolution of multiple sclerosis. J Neurol Neurosurg Psychiatry 64 (Suppl): 552–558CrossRefGoogle Scholar
  44. 44.
    Gass A, Barker GJ, Kidd D, et al. (1994) Correlation of magnetization transfer ratio with disability in multiple sclerosis. Ann Neurol 36: 62–67PubMedCrossRefGoogle Scholar
  45. 45.
    Loevener LA, Grossman RI, McGowan JC, et al. (1995) Characterization of multiple sclerosis plaques with T1-weighted MR and quantitative magnetization transfer. AJNR Am J Neuroradiol 16: 1473–1479Google Scholar
  46. 46.
    Matthews PM, Pioro E, Narayanan S, et al. (1996) Assessment of lesion pathology in multiple sclerosis using quantitative MRI morphometry and magnetic resonance spectroscopy. Brain 119: 715–722PubMedCrossRefGoogle Scholar
  47. 47.
    De Stefano N, Matthews PM, Antel JP, et al. (1995) Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 38: 901–909PubMedCrossRefGoogle Scholar
  48. 48.
    Campi A, Filippi M, Comi G, et al. (1996) Magnetization transfer ratios of enhancing and non-enhancing lesions in multiple sclerosis. Neuroradiology 38: 115–119PubMedCrossRefGoogle Scholar
  49. 49.
    Hiehle JF, Grossman RI, Ramer NK, et al. (1995) Magnetization transfer effect in MR-detected multiple sclerosis lesions: Comparison with gadolinium-enhanced spin-echo images and non-enhanced T1-weighted images. AJNR Am J Neuroradiol 16: 69–77PubMedGoogle Scholar
  50. 50.
    Petrella JR, Grossman RI, McGowan JC, Campbell G, Cohen JA (1996) Multiple sclerosis lesions: Relationship between MR enhancement pattern and magnetization transfer effect. AJNR Am J Neuroradiol 17: 1041–1049PubMedGoogle Scholar
  51. 51.
    Filippi M, Rocca MA, Rizzo G, et al. (1998) Magnetization transfer ratios in multiple sclerosis lesions enhancing after different dose of gadolinium. Neurology 50: 1289–1293PubMedCrossRefGoogle Scholar
  52. 52.
    Filippi M, Rocca MA, Comi G (1998) Magnetization tranfer ratios of multiple sclerosis lesions with variable durations of enhancement. J Neurol Sci 159: 162–165PubMedCrossRefGoogle Scholar
  53. 51.53.
    Tievsky AL, Ptak T, Wu O, et al. (1997) Evaluation of MS lesions with full tensor diffusion weighted imaging and anisotropy mapping. In: Proceedings of the International Society for Magnetic Resonance in Medicine 1: 666 (abstract)Google Scholar
  54. 54.
    Gass A, Gaa J, Schreiber W, et al. (1997) Echo planar diffusion weighted magnetic resonance imaging in patients with active multiple sclerosis. In: Proceedings of the International Society for Magnetic Resonance in Medicine 1: 658 (abstract)Google Scholar
  55. 55.
    Dousset V, Gayou A, Brochet B, Caille JM (1998) Early structural changes in acute MS lesions assessed by serial magnetization transfer studies. Neurology 51: 1150–1155PubMedCrossRefGoogle Scholar
  56. 56.
    56. Filippi M, Comi G (1997) Magnetization transfer ratio changes in a symptomatic lesion of a patient at presentation with possible multiple sclerosis. J Neurol Sci 151: 79–81PubMedCrossRefGoogle Scholar
  57. 57.
    Lai HM, Davie CA, Gass A, et al. (1997) Serial magnetization transfer ratios in gadolinium-enhancing lesions in multiple sclerosis. J Neurol 244: 308–311PubMedCrossRefGoogle Scholar
  58. 58.
    Alonso J, Rovira A, Cucurella MG, et al. (1997) Serial magnetization transfer imaging in multiple sclerosis lesions. In: Proceedings of the International Society for Magnetic Resonance in Medicine 1: 639 (abstract)Google Scholar
  59. 59.
    Filippi M, Rocca MA, Martino G, et al. (1998) Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patient with multiple sclerosis. Ann Neurol 43: 809–814PubMedCrossRefGoogle Scholar
  60. 60.
    Goodkin DE,RooneyW,Sloan R, et al.( 1998) PD,T1 Gadolinium (Gd+) intensities, T2, and MTRs are chronically diffusely abnormal in MS brain and on monthly MRI scans are related to the appearance of new Gd+ lesions in normal appearing white matter. Neurology 50 (Suppl 4): 191 (abstract)Google Scholar
  61. 61.
    Pike GB, De Stefano N, Narayanan S, et al. (1998) A longitudinal study of magnetization transfer in multiple sclerosis. In: Proceedings of the International Society for Magnetic Resonance in Medicine 1: 122 (abstract)Google Scholar
  62. 62.
    Davie CA, Hawkins CP, Barker GJ, et al. (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117: 49–58PubMedCrossRefGoogle Scholar
  63. 63.
    van Waesberghe JHTM, van Walderveen MAA, Casteljins JA, et al. (1997) Natural history of T1 “black holes” in new enhancing multiple sclerosis lesions. In: Proceedings of the International Society for Magnetic Resonance in Medicine 1: 644 (abstract)Google Scholar
  64. 64.
    Clanet M, Berry I, Boulanouar K (1997) Functional imaging in multiple sclerosis. Int Mult Scler J 4: 26–32Google Scholar
  65. 65.
    Rombouts SA, Lazeron RH, Scheltens P, et al. (1998) Visual activation patterns in patients with optic neuritis: an fMRI pilot study. Neurology 50:1896–1899PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • M. Filippi
    • 1
  1. 1.Neuroimaging Research Unit, Department of Neuroscience, Scientific Institute Ospedale San RaffaeleUniversity of MilanItaly

Personalised recommendations