Advertisement

Magnetic Resonance Imaging Techniques to Monitor Phase III Treatment Trials

  • P. D. Molyneux
  • D. H. Miller
Part of the Topics in Neuroscience book series (TOPNEURO)

Abstract

Since its introduction early in the 1980s, magnetic resonance (MR) has become established as the most important paraclinical tool for monitoring treatment efficacy in phase III multiple sclerosis (MS) trials. MR protocols are now routinely incorporated in such studies, providing powerful evidence of therapeutic effect and extending clinical observations.

Keywords

Multiple Sclerosis Expand Disability Status Scale Magn Reson Image Magnetisation Transfer Ratio Lesion Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 33: 1444–1452PubMedCrossRefGoogle Scholar
  2. 2.
    Noseworthy JH, Vandervoort MK, Wong CJ, et al. (1990) Interrater variability with the expanded disability status scale (EDSS) and functional systems (FS) in a multiple sclerosis clinical trial. The Canadian Cooperation MS Study Group. Neurology 40:971–975PubMedCrossRefGoogle Scholar
  3. 3.
    Rudick RA, Antel J, Confavreux C, et al. (1996) Clinical outcome assessment in multiple sclerosis. Ann Neurol 40: 469–479PubMedCrossRefGoogle Scholar
  4. 4.
    Whitaker JN, McFarland HF, Rudge P, et al. (1995) Outcomes assessment in multiple sclerosis clinical trials: A critical analysis. Mult Scler 1: 37–47PubMedGoogle Scholar
  5. 5.
    Miller DH, Grossman RI, Reingold SC, et al. (1998) The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain 121: 3–24PubMedCrossRefGoogle Scholar
  6. 6.
    Thompson AJ, Kermode AG, Wicks D, et al. (1991) Major differences in the dynamics of primary and secondary progressive multiple sclerosis. Ann Neurol 29: 53–62PubMedCrossRefGoogle Scholar
  7. 7.
    Thompson AJ, Miller DH, Youl B, et al. (1992) Serial gadolinium enhanced MRI in relapsing remitting multiple sclerosis of varying disease duration. Neurology 42:60–63PubMedCrossRefGoogle Scholar
  8. 8.
    Miller DH, Barkhof F, Nauta JJ (1993) Gadolinium enhancement increases the sensitivity of MRI in detecting disease activity in multiple sclerosis. Brain 116:1077–1094PubMedCrossRefGoogle Scholar
  9. 9.
    Kidd D, Thorpe JW, Kendall BE, et al. (1996) MRI dynamics of brain and spinal cord in progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 60:15–19PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Paty DW, Li DKB, Oger JJF, et al. (1994) Magnetic resonance imaging in the evaluation of clinical trials in multiple sclerosis. Ann Neurol 36: S95–S96PubMedCrossRefGoogle Scholar
  11. 11.
    Gass A, Barker GJ, Kidd D, et al. (1994) Correlation of magnetization transfer ratio with clinical disability in multiple sclerosis. Ann Neurol 36: 62–67PubMedCrossRefGoogle Scholar
  12. 12.
    IFNB Multiple Sclerosis Study Group, University of British Columbia MS/MRI Analysis Group (1995) Interferon beta-lb in the treatment of multiple sclerosis: Final outcome of the randomised, controlled trial. Neurology 45:1277–1285CrossRefGoogle Scholar
  13. 13.
    Gasperini C, Horsfield MA, Thorpe JW, et al. (1996) Macroscopic and microscopic assessments of disease burden by MRI in multiple sclerosis: Relationship to clinical parameters. J Magn Reson Imaging 6: 580–584PubMedCrossRefGoogle Scholar
  14. 14.
    Zhao GJ, Li DKB, Wolinsky JS, et al. (1997) Clinical and magnetic resonance imaging changes correlate in a clinical trial monitoring cyclosporine therapy for multiple sclerosis. J Neuroimaging 7: 1–7PubMedGoogle Scholar
  15. 15.
    McDonald WI (1992) Multiple sclerosis: Diagnostic optimism [editorial]. BMJ: 1256–1260Google Scholar
  16. 16.
    Allen IV, McKeown SR (1979) A histological, histochemical and biochemical study of the macroscopically normal white matter in multiple sclerosis. J Neurol Sci 41: 81–91PubMedCrossRefGoogle Scholar
  17. 17.
    Armspach JP, Gounot D, Rumbach L, et al. (1991) In vivo determination of multiexponential T2 relaxation in the brain of patients with multiple sclerosis. Magn Reson Imaging 9: 107–113PubMedCrossRefGoogle Scholar
  18. 18.
    Dousset V, Grossman RI, Ramer KN, et al. (1992) Experimental allergic encephalomyelitis and multiple sclerosis: Lesion characterization with magnetization transfer imaging. Radiology 182:483–491PubMedCrossRefGoogle Scholar
  19. 19.
    Filippi M, Campi A, Dousset V, et al. (1995) A magnetisation transfer imaging study of normal appearing white matter in multiple sclerosis. Neurology 45: 478–482PubMedCrossRefGoogle Scholar
  20. 20.
    Loevner LA, Grossman RI, Cohen JA, et al. (1995) Microscopic disease in normal-appearing white matter on conventional images in patients with multiple sclerosis: Assessment with magnetization-transfer measurements. Radiology 196:511–515PubMedCrossRefGoogle Scholar
  21. 21.
    Arnold DL, Matthews PM, Francis G, et al. (1992) Proton magnetic resonance spectroscopic imaging for metabolic characterisation of demyelinating plaques. Ann Neurol 31: 235–241PubMedCrossRefGoogle Scholar
  22. 22.
    Husted CA, Goodkin DS, Hugg JW, et al. (1994) Biochemical alterations in multiple sclerosis lesions and normal appearing white matter demonstrated by in vivo 31P and 1H spectroscopic imaging. Ann Neurol 36:157–165PubMedCrossRefGoogle Scholar
  23. 23.
    Rooney WD, Goodkin DE, Schuff N, et al. (1997) 1H MRSI of normal appearing white matter in multiple sclerosis. Mult Scler 3: 231–237PubMedCrossRefGoogle Scholar
  24. 24.
    Davie CA, Barker GJ, Thompson AJ, et al. (1997) 1H magnetic resonance spectroscopy of chronic cerebral white matter lesions and normal appearing white matter in multiple sclerosis. J Neurol Neurosurg Psychiatry 63: 736–742PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Fu L, Matthews PM, De Stefano N, et al. (1998) Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 121:103–113PubMedCrossRefGoogle Scholar
  26. 26.
    Barbosa S, Blumhardt LD, Roberts N, et al. (1994) Magnetic resonance relaxation time mapping in multiple sclerosis: Normal appearing white matter and the “invisible” lesion load. Magn Reson Imaging 12: 33–42PubMedCrossRefGoogle Scholar
  27. 27.
    Miller DH, Barkhof F, Albert PS, et al. (1996) Guidelines for the use of magnetic resonance techniques in monitoring the treatment of MS. Ann Neurol 39: 6–16PubMedCrossRefGoogle Scholar
  28. 28.
    Paty DW, Li DKB, the UBC MS/MRI Study Group, the IFNB Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting MS. MRI analysis results of a multcenter, randomised, double blind, placebo controlled trial. Neurology 43: 662–667PubMedCrossRefGoogle Scholar
  29. 29.
    Miller DH, Molyneux PD, MacManus DG, et al. (1998) A double-blind, placebo-controlled trial of beta interferon-1b in secondary progressive multiple sclerosis. Neurology (in press) Google Scholar
  30. 30.
    Polman C, Dahlke F, Thompson AJ, et al. (1995) Interferon beta-1b in secondary progressive multiple sclerosis. Outline of the clinical trial. Mult Scler 1: S51–54PubMedGoogle Scholar
  31. 31.
    Filippi M, Horsfield MA, Ader HJ, et al. (1998) Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann Neurol 43: 499–506PubMedCrossRefGoogle Scholar
  32. 32.
    Paty DW, Rebif Study Group (1997) Interferon-beta 1A (Rebif) in the treatment of relapsing-remitting multiple sclerosis: The MRI results of a large multicentre study. Mult Scler 3: 269Google Scholar
  33. 33.
    Molyneux PD, Miller DH, Filippi M, et al. (1998) Sample size requirements for phase III treatment trials based on changes in total brain lesion load on T2 weighted images: A model based approach to power calculations. In: Proceedings of the International Society of Magnetic Resonance in Medicine 2:1320 (abstract)Google Scholar
  34. 34.
    Cavazzuti M, Merelli E, Tassone G, et al. (1997) Lesion load quantification in serial MR of early relapsing multiple sclerosis patients in azathioprine treatment. A retrospective study. Eur Neurol 38: 284–290PubMedCrossRefGoogle Scholar
  35. 35.
    Filippi M, van Waesberghe JH, Horsfield MA, et al. (1997) Interscanner variation in brain MRI lesion load measurements in MS: Implications for clinical trials. Neurology 49: 371–377PubMedCrossRefGoogle Scholar
  36. 36.
    Evans AC, Frank JA, Antel J, et al. (1997) The role of MRI in clinical trials of multiple sclerosis: Comparison of image processing techniques. Ann Neurol 41: 125–132PubMedCrossRefGoogle Scholar
  37. 37.
    Simon JH, Jacobs LD, Campion M, et al. (1998) Magnetic resonance studies of intramuscular interferon beta-1a for relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group. Ann Neurol 43: 79–87PubMedCrossRefGoogle Scholar
  38. 38.
    Rudick RA, Simonian NA, Alam JA, et al. (1998) Incidence and significance of neutralizing antibodies to interferon beta-la in multiple sclerosis. Neurology 50:1266–1272PubMedCrossRefGoogle Scholar
  39. 39.
    Tubridy N, Ader HJ, Barkhof F, et al. (1998) Exploratory treatment trials in multiple sclerosis using MRI: Sample size calculations for relapsing-remitting and secondary progressive subgroups using placebo controlled parallel groups. J Neurol Neurosurg Psychiatry 64: 50–55PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Thompson AJ, Kermode AJ, MacManus DG, et al. (1989) Pathogenesis of progressive multiple sclerosis [letter]. Lancet i: 1322–1323CrossRefGoogle Scholar
  41. 41.
    Thompson AJ, Polman C, Miller DH, et al. (1997) Primary progressive multiple sclerosis. Brain 120: 1085–1096PubMedCrossRefGoogle Scholar
  42. 42.
    Leary SM, Miller DH, Thompson AJ (1997) Design of a study of interferon beta-la in primary progressive multiple sclerosis. J Neurol 244(Suppl 3): 291Google Scholar
  43. 43.
    Tofts PS, Barker GJ, Filippi M, et al. (1997) An oblique cylinder contrast-adjusted (OCCA) phantom to measure the accuracy of brain lesion estimation schemes in multiple sclerosis. Magn Reson Imaging 15: 183–192PubMedCrossRefGoogle Scholar
  44. 44.
    Gawne-Cain ML, Webb S, Tofts P, et al. (1996) Lesion volume measurement in MS: How important is accurate repositioning? J Magn Reson Imaging 6: 705–713PubMedCrossRefGoogle Scholar
  45. 45.
    Simon JH, Scherzinger A, Raff U, et al. (1997) Computerized method of lesion volume quantification in multiple sclerosis: Error of serial studies. AJNR Am J Neuroradiol 18: 580–582PubMedGoogle Scholar
  46. 46.
    Filippi M, Marcianò N, Capra R, et al. (1997) The effect of imprecise repositioning on lesion volume measurements in patients with multiple sclerosis. Neurology 49: 274–276PubMedCrossRefGoogle Scholar
  47. 47.
    Rovaris M, Gawne-Cain ML, Sormani MP, et al. (1998) The effect of repositioning on brain MRI lesion load assessment in multiple sclerosis: Reliability of subjective quality criteria. J Neurol 245: 273–275PubMedCrossRefGoogle Scholar
  48. 48.
    Gallagher HL, MacManus DG, Webb SL, et al. (1997) A reproducible repositioning method for serial magnetic resonance imaging studies of the brain in treatment trials for multiple sclerosis. J Magn Reson Imaging 7: 439–441PubMedCrossRefGoogle Scholar
  49. 49.
    Molyneux PD, Tubridy N, Parker GJM, et al. (1998) The effect of slice thickness between 1 and 5 mm with 3D fast-FLAIR on MRI lesion detection and quantification in multiple sclerosis. AJNR Am J Neuroradiol (in press) Google Scholar
  50. 50.
    Jacobs LD, Cookfair DL, Rudick RA, et al. (1996) Intramuscular interferon beta-la for disease progression in relapsing multiple sclerosis. Ann Neurol 39: 285–294PubMedCrossRefGoogle Scholar
  51. 51.
    Kastrukoff LF, Oger JJ, Hashimoto SA, et al. (1990) Systemic lymphoblastoid interferon therapy in chronic progressive multiple sclerosis. I. Clinical and MRI evaluation. Neurology 40: 479–486PubMedCrossRefGoogle Scholar
  52. 52.
    Hennig J, Naureth A, Friedburg H (1986) RARE imaging: A fast imaging method for clinical MR. Magn Reson Med 3: 823–833PubMedCrossRefGoogle Scholar
  53. 53.
    Hennig J, Friedburg H (1988) Clinical applications and methodological developments of RARE technique. Magn Reson Imaging 6: 391–395PubMedCrossRefGoogle Scholar
  54. 54.
    Bastianello S, Bozzao A, Paolillo A, et al. (1997) Fast spin-echo and fast fluid-attenuated inversion-recovery versus conventional spin-echo sequences for MR quantification of multiple sclerosis lesions. AJNR Am J Neuroradiol 18: 699–704PubMedGoogle Scholar
  55. 55.
    Thorpe JW, Halpin SF, MacManus DG (1994) A comparison between fast and conventional spin-echo in the detection of multiple sclerosis lesions. Neuroradiology 36:388–392PubMedCrossRefGoogle Scholar
  56. 56.
    Constable RT, Gore JC (1992) The loss of small objects in variable TE imaging: Implications for FSE, RARE and EPI. Magn Reson Imaging 28: 9–24Google Scholar
  57. 57.
    Rovaris M, Gawne-Cain ML, Wang L, et al. (1997) A comparison of conventional and fast spin-echo sequences for the measurement of lesion load in multiple sclerosis using a semiautomated contour technique. Neuroradiology 39: 161–165PubMedCrossRefGoogle Scholar
  58. 58.
    Gawne-Cain ML, O’Riordan JI, Coles A, et al. (1998) MRI lesion volume measurement in MS and its correlation with disability: A comparison of fast FLAIR and spin echo sequences. J Neurol Neurosurg Psychiatry 64:197–203PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Barkhof F, Filippi M, Miller D, et al. (1997) Strategies for optimising MRI techniques aimed at monitoring disease activity in multiple sclerosis treatment trials. J Neurol 244: 76–84PubMedCrossRefGoogle Scholar
  60. 60.
    Grossman RI (1996) Magnetic resonance imaging: Current status and strategies for improving multiple sclerosis clinical trial design. In: Goodkin DE, Rudick RA (eds) Treatment of multiple sclerosis: Trial design, results, and future strategies. Springer, Berlin Heidelberg New York, pp 161–186CrossRefGoogle Scholar
  61. 57.61.
    61. De Coene B, Hajnal JV, Gatehouse P, et al. (1992) MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences. AJNR Am J Neuroradiol 13:1555–1564PubMedGoogle Scholar
  62. 62.
    Thorpe JW, Halpin SF, MacManus, et al. (1994) Detection of multiple sclerosis by magnetic resonance imaging. Lancet 344:1235PubMedCrossRefGoogle Scholar
  63. 63.
    De Coene B, Hajnal JV, Pennock JM, et al. (1993) MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences. Neuroradiology 35: 327–331PubMedCrossRefGoogle Scholar
  64. 64.
    Rydberg JN, Hammond CA, Grimm RC, et al. (1994) Initial clinical experience in MR imaging of the brain with a fast fluid-attenuated inversion recovery pulse sequence. Radiology 193: 173–180PubMedCrossRefGoogle Scholar
  65. 65.
    Filippi M, Yousry T, Baratti C, et al. (1996) Quantitative assessment of MRI lesion load in multiple sclerosis: A comparison of conventional spin echo with fast fluid attenuated inversion recovery. Brain 119:1349–55PubMedCrossRefGoogle Scholar
  66. 66.
    Gawne-Cain ML, O’Riordan JI, Thompson AJ, et al. (1997) Multiple sclerosis lesion detection in the brain: a comparison of fast fluid-attenuated inversion recovery and conventional T2-weighted dual spin echo. Neurology 49: 364–370PubMedCrossRefGoogle Scholar
  67. 67.
    67. Hajnal JV, Oatridge J, Murdoch J, et al. (1998) Failure of FLAIR sequences to suppress CSF in the posterior fossa: Diagnosis of a problem and solution with adiabatic inversion pulses. In: Proceedings of the International Society of Magnetic Resonance in Medicine 2:1350 (abstract)Google Scholar
  68. 68.
    Boggild MD, Williams R, Haq N, et al. (1996) Cortical plaques visualised by fluid-attenuated inversion recovery imaging in multiple sclerosis. Neuroradiology 38(Suppl 1): 10–13CrossRefGoogle Scholar
  69. 69.
    Filippi M, Horsfield MA, Rovaris M, et al. (1998) Intraobserver and interobserver variability in schemes for estimating volume of brain lesions on MR images in multiple sclerosis. AJNR Am J Neuroradiol 19: 239–244PubMedGoogle Scholar
  70. 70.
    Gawne-Cain ML, Silver NC, Moseley IF, et al. (1997) Fast FLAIR of the brain: The range of appearances in normal subjects and its application to quantification of white matter disease. Neuroradiology 39: 243–249PubMedCrossRefGoogle Scholar
  71. 71.
    Bradley WG, Glenn BJ (1987) The effect of variation in slice thickness and interslice gap on MR lesion detection. AJNR Am J Neuroradiol 8:1057–1062PubMedGoogle Scholar
  72. 72.
    Filippi M, Horsfield MA, Campi A, et al. (1995) Resolution-dependent estimates of lesion volumes in MRI studies of the brain in multiple sclerosis. Ann Neurol 38: 749–754PubMedCrossRefGoogle Scholar
  73. 73.
    Filippi M, Yousry T, Horsfield M, et al. (1996) A high-resolution three-dimensional T1-weighted gradient echo sequence improves the detection of disease activity in multiple sclerosis. Ann Neurol 40: 901–907PubMedCrossRefGoogle Scholar
  74. 74.
    Barker GJ (1998) 3D Fast FLAIR. A CSF-nulled fast spin echo pulse sequence. Magn Reson Imaging (in press) Google Scholar
  75. 75.
    Filippi M, Horsfield MA, Tofts PS, et al. (1995) Quantitative assessment of MRI lesion load in monitoring the evolution of multiple sclerosis. Brain 118:1601–1612PubMedCrossRefGoogle Scholar
  76. 76.
    Erickson BJ, Avula RT (1998) An algorithm for automatic segmentation and classification of magnetic resonance brain images. J Digit Imaging 11: 74–82PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    77. Clarke LP, Velthuizen RP, Camacho MA, et al. (1995) MRI segmentation: Methods and applications. Magn Reson Imaging 13: 343–68PubMedCrossRefGoogle Scholar
  78. 78.
    Plante E, Turkstra L (1991) Sources of error in the quantitative analysis of MRI scans. Magn Res Imaging 9: 589–595CrossRefGoogle Scholar
  79. 79.
    Molyneux PD, Wang L, Lai M, et al. (1998) Quantitative techniques for lesion load measurement in multiple sclerosis: An assessment of the global threshold technique after non-uniformity and histogram matching corrections. Eur J Neurol 5: 55–60PubMedCrossRefGoogle Scholar
  80. 80.
    Fleiss JL (1985) The design and analysis of clinical experiments. John Wiley and Sons, New YorkGoogle Scholar
  81. 81.
    Streiner DL, Norman GR (1995) Health measurement scales: A practical guide to their development and use. Oxford University, Oxford, pp 104–127Google Scholar
  82. 82.
    Molyneux PD, Tofts PS, Fletcher A, et al. (1998) Precision and reliability for measurement of MRI lesion volume in multiple sclerosis: A comparison of two computer assisted techniques. J Neurol Neurosurg Psychiatry 65: 42–47PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Koopmans RA, Li DKB, Redekop WK, et al. (1993) The use of magnetic resonance imaging in monitoring interferon therapy of multiple sclerosis. J Neuroimaging 3: 163–168PubMedGoogle Scholar
  84. 84.
    Filippi M, Gawne-Cain ML, Gasperini C, et al. (1998) Effect of training and different measurement strategies on the reproducibility of brain MRI lesion load measurements in multiple sclerosis. Neurology 50: 238–244PubMedCrossRefGoogle Scholar
  85. 85.
    Wicks DAG, Tofts PS, Miller DH, et al. (1992) Volume measurement of multiple sclerosis lesions with magnetic resonance images. A preliminary study. Neuroradiology 34: 475–479PubMedCrossRefGoogle Scholar
  86. 86.
    Filippi M, Rovaris M, Campi A, et al. (1996) Semi-automated thresholding technique for measuring lesion volumes in multiple sclerosis: Effects of change of the threshold on the computed lesion loads. Acta Neurol Scand 93: 30–34PubMedCrossRefGoogle Scholar
  87. 87.
    Filippi M, Horsfield MA, Bressi S, et al. (1995) Intra- and inter-observer variability of brain MRI lesion volume measurements in multiple sclerosis. A comparison of techniques. Brain 118: 1593–1600PubMedCrossRefGoogle Scholar
  88. 88.
    Grimaud J, Lai M, Thorpe J, et al. (1996) Quantification of MRI lesion load in MS: a comparison of three computer-assisted techniques. Magn Reson Imaging 14: 495–505PubMedCrossRefGoogle Scholar
  89. 89.
    van Walderveen MAA, Barkhof F, Hommes OR, et al. (1995) Correlating MRI and clinical disease: Relevance of hypointense lesions on short-TR/short-TE (T1-weighted) spin-echo images. Neurology 45: 1684–1690PubMedCrossRefGoogle Scholar
  90. 90.
    Kohn M, Tanna M, Herman G (1991) Analysis of brain and cerebrospinal fluid volumes with MR imaging. Radiology 178:115–122PubMedCrossRefGoogle Scholar
  91. 91.
    Kikinis R, Shenton M, Jolesz F, et al. (1992) Routine quantitative MRI-based analysis of brain and fluid spaces. J Magn Reson Imaging 2: 619–629PubMedCrossRefGoogle Scholar
  92. 92.
    Mitchell JR, Karlik SJ, Lee DH, et al. (1994) Computer-assisted identification and quantification of multiple sclerosis lesions in MR imaging volumes in the brain. J Magn Reson Imaging 4: 197–208PubMedCrossRefGoogle Scholar
  93. 93.
    Simmons A, Arridge SR, Barker GJ, et al. (1994) Improvements in the quality of MRI cluster analysis. Magn Reson Imaging 12: 1191–1204PubMedCrossRefGoogle Scholar
  94. 94.
    Simmons A, Arridge SR, Barker GJ, et al. (1996) Simulation of MRI cluster plots and application to neurological segmentation. Magn Reson Imaging 14: 73–92PubMedCrossRefGoogle Scholar
  95. 95.
    Bedell BJ, Narayana PA, Wolinsky JS (1997) A dual approach for minimising false lesion classification on magnetic resonance images. Magn Reson Med 37: 94–102PubMedCrossRefGoogle Scholar
  96. 96.
    Udupa JK, Samarasekera S (1996) Fuzzy connectedness and object definition: Theory, algorithms and applications in image segmentation. Graph Models Image Proc 58: 246–261CrossRefGoogle Scholar
  97. 97.
    Udupa JK, Wei L, Samarasekera S, Miki Y, et al. (1997) Multiple sclerosis lesion quantification using fuzzy connectedness principles. IEEE Trans Med Imaging 16: 598–609PubMedCrossRefGoogle Scholar
  98. 98.
    Samaresekera S, Udupa JK, Miki Y, et al. (1997) A new computer-assisted method for the quantification of enhancing lesions in multiple sclerosis. J Comput Assist Tomogr 21:145–151CrossRefGoogle Scholar
  99. 99.
    Edan G, Miller D, Clanet M, et al. (1997) Therapeutic effect of mitoxantrone combined with methylprednisolone in multiple sclerosis: A randomised multicentre study of active disease using MRI and clinical criteria. J Neurol Neurosurg Psychiatry 62:112–118PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Goodkin DE, Ross JS, Medendorp SM, et al. (1992) MRI lesion enlargement in MS. Disease-related activity, chance occurrence, or measurement artifact? Arch Neurol 49: 261–263PubMedCrossRefGoogle Scholar
  101. 101.
    Barkhof F, Filippi M, van Waesberghe JH, et al. (1997) Improving interobserver variation in reporting gadolinium-enhanced MRI lesions in multiple sclerosis. Neurology 49: 1682–1688PubMedCrossRefGoogle Scholar
  102. 102.
    Molyneux PD, Miller DH, Filippi M, et al. (1998) Intra and inter-observer variation in reporting activity on serial T2 weighted brain MR images in multiple sclerosis. In: Proceedings of the International Society of Magnetic Resonance in Medicine 2:1330 (abstract)Google Scholar
  103. 103.
    Smith ME, Stone LA, Albert PS, et al. (1993) Clinical worsening in multiple sclerosis is associated with increased number and area of gadopentate dimeglumine-enhancing magnetic resonance imaging lesions. Ann Neurol 33: 480–489PubMedCrossRefGoogle Scholar
  104. 104.
    Filippi M, Paty DW, Kappos L (1995) Correlations between changes in disability and T2-weighted brain MRI activity in multiple sclerosis: A follow-up study. Neurology 45:255–260PubMedCrossRefGoogle Scholar
  105. 105.
    Khoury SJ, Guttman CRG, Orav EJ, et al. (1994) Longitudinal MRI in multiple sclerosis: correlation between disability and lesion burden. Neurology 44: 2120–2124PubMedCrossRefGoogle Scholar
  106. 106.
    Pozilli C, Bastianello S, Koudriavtseva T, et al. (1996) Magnetic resonance imaging changes with recombinant human interferon-B-la: A short term study in relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 61: 251–258CrossRefGoogle Scholar
  107. 107.
    Molyneux PD, Filippi M, Barkhof F, et al. (1998) Correlations between monthly enhanced MRI lesion rate and changes in T2 lesion volume in multiple sclerosis. Ann Neurol 43: 332–339PubMedCrossRefGoogle Scholar
  108. 108.
    Frank JA, Stone LA, Smith ME, et al. (1994) Serial contrast-enhanced magnetic resonance imaging in patients with early relapsing-remitting multiple sclerosis: Implications for treatment trials. Ann Neurol 36(Suppl): S86–S90PubMedCrossRefGoogle Scholar
  109. 109.
    Losseff N, Kingsley DPE, McDonald WI, et al. (1996) Clinical and magnetic resonance predictors of disability in primary and secondary progressive multiple sclerosis. Mult Scler 1:218–222PubMedGoogle Scholar
  110. 110.
    Koudriavtseva T, Thompson AJ, Fiorelli M, et al. (1997) Gadolinium enhanced MRI disease activity in relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 62: 285–287PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Giovannoni G, Lai M, Thorpe J, et al. (1997) Longitudinal study of soluble adhesion molecules in multiple sclerosis: Correlation with gadolinium enhanced magnetic resonance imaging. Neurology 48: 1557–1565PubMedCrossRefGoogle Scholar
  112. 112.
    Hiehle JF, Grossman RI, Ramer KN, et al. (1995) Magnetization transfer effects in MR-detected multiple sclerosis lesions: Comparison with gadolinium-enhanced spin echo images and nonenhanced T1-weighted images. AJNR Am J Neuroradiol 16: 69–77PubMedGoogle Scholar
  113. 113.
    van Waesberghe JHTM, Castelijns JA, Scheltens P, et al. (1997) Comparison of four potential parameters of tissue destruction in multiple sclerosis lesions. Magn Reson Imaging 15: 155–162PubMedCrossRefGoogle Scholar
  114. 114.
    Truyen L, van Waesberghe JH, van Walderveen MA, et al. (1996) Accumulation of hypointense lesions (‘black holes’) on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 47: 1469–1476PubMedCrossRefGoogle Scholar
  115. 115.
    van Walderveen MAA, Kamphorst W, Scheltens, et al. (1998) Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 50: 1282–1288PubMedCrossRefGoogle Scholar
  116. 116.
    van Waesberghe JHTM, van der Boom R, Filippi M, et al. (1998) MR outcomes in multiple sclerosis. Comparison of conventional parameters and MTR parameters in association with disability. In: Proceedings of the International Society of Magnetic Resonance in Medicine 2: 1319 (abstract)Google Scholar
  117. 117.
    Lycklama a Nijeholt GJ, van Walderveen MAA, Castelijns JA, et al. (1998) Brain and spinal cord abnormalities in multiple sclerosis. Correlations between MRI parameters, clinical subtypes and symptoms. Brain 121: 687–697CrossRefGoogle Scholar
  118. 118.
    Filippi M, Rocca MA, Horsfield MA, et al. (1998) Increased spatial resolution using a three-dimensional T1-weighted gradient-echo MR sequence results in greater hypointense lesion volumes in multiple sclerosis. AJNR Am J Neuroradiol 19: 235–238PubMedGoogle Scholar
  119. 119.
    Sailer M, Losseff N, Wang L, et al. (1998) The relationship between T1 lesion load and cerebral atrophy in multiple sclerosis. J Neurol 245(6/7): 371 (abstract)Google Scholar
  120. 120.
    O’Riordan JI, Gawne-Cain M, Coles A, et al. (1998) T1 hypointense lesion load assessment in secondary progressive multiple sclerosis. J Neurol 245(6/7): 440 (abstract)Google Scholar
  121. 121.
    van Waesberghe JHTM, van Walderveen MAA, Castelijns JA, et al. (1998) Patterns of lesion development in multiple sclerosis: Longitudinal observations with T1-weighted spin-echo and magnetisation transfer MR. AJNR Am J Neuroradiol 19: 675–683PubMedGoogle Scholar
  122. 122.
    Wolff SD, Balaban RS (1989) Magnetisation transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10:135–144PubMedCrossRefGoogle Scholar
  123. 123.
    Wolff SD, Balaban RS (1994) Magnetization transfer imaging: Practical aspects and clinical applications. Radiology 192: 593–599PubMedCrossRefGoogle Scholar
  124. 124.
    Fralix TA, Ceckler TL, Wolff SD, et al. (1991) Lipid bilayer and water proton magnetization transfer: Effect of cholesterol. Magn Reson Med 18: 214–223PubMedCrossRefGoogle Scholar
  125. 125.
    Silver NC, Barker GJ, MacManus, et al. (1996) Decreased magnetisation transfer ratio due to demyelination: A case of central pontine myelinolysis. J Neurol Neurosurg Psychiatry 61: 208–209PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Silver NC, Barker GJ, MacManus DG, et al. (1997) Magnetisation transfer ratio of normal brain white matter: A normative database spanning four decades of life. J Neurol Neurosurg Psychiatry 62: 223–228PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Lexa FJ, Grossman RI, Rosenquist AC (1994) MR of Wallerian degeneration in the feline visual system: Characterization by magnetization transfer rate with histopathologic correlation. AJNR Am J Neuroradiol 15: 201–212PubMedGoogle Scholar
  128. 128.
    Dousset V, Brochet B, Vital F, et al. (1994) MR Imaging including diffusion and magnetisation transfer of chronic relapsing experimental encepalomyelitis-correlation with immunological and pathological datas. In: Proceedings of the International Society of Magnetic Resonance in Medicine 2:1401 (abstract)Google Scholar
  129. 129.
    Dousset V, Brochet B, Vital A, et al. (1995) Lysolecithin-induced demyelination in primates: Preliminary in vivo study with MR and magnetisation transfer. AJNR Am J Neuroradiol 16: 225–231PubMedGoogle Scholar
  130. 130.
    Thorpe JW, Barker GJ, Jones SJ, et al. (1995) Magnetisation transfer ratios and transverse magnetisation decay curves in optic neuritis: correlation with clinical findings and elctrophysiology. J Neurol Neurosurg Psychiatry 59: 487–492PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Filippi M, Rocca MA, Rizzo G, et al. (1998) Magnetization transfer ratios in multiple sclerosis lesions enhancing after different doses of gadolinium. Neurology 50: 1289–1293PubMedCrossRefGoogle Scholar
  132. 132.
    Lai HM, Davie CA, Gass A, et al. (1997) Serial magnetisation transfer ratios in gadolinium-enhancing lesions in multiple sclerosis. J Neurol 244: 308–311PubMedCrossRefGoogle Scholar
  133. 133.
    van Buchem MA, McGowan JC, Kolson DL, et al. (1996) Quantitative volumetric magnetisation transfer analysis in multiple sclerosis: Estimation of macroscopic and microscopic disease burden. Magn Reson Med 36: 632–636PubMedCrossRefGoogle Scholar
  134. 134.
    van Buchem MA, Udupa JK, McGowan, et al. (1997) Global volumetric estimation of disease burden in multiple sclerosis based on magnetisation transfer imaging. AJNR Am J Neuroradiol 18:1287–1290PubMedGoogle Scholar
  135. 135.
    Silver NC, Gass A, Barker GJ, et al. (1998) Evaluation of magnetisation transfer ratio histogram analysis methods in multiple sclerosis. In: Proceedings of the International Society of Magnetic Resonance in Medicine 2: 1322 (abstract)Google Scholar
  136. 136.
    Iannucci G, Rovaris M, Minicucci L, et al. (1998) Assessment of disease severity in multiple sclerosis patients with magnetisation transfer histograms. In: Proceeding of the International Society of Magnetic Resonance in Medicine 1: 120 (abstract)Google Scholar
  137. 137.
    Berry I, Barker G, Barkhof F, et al. (1996) A multicenter measurement of magnetisation transfer ratio in normal white matter. In: Proceedings of the International Society of Magnetic Resonance in Medicine 1: 536 (abstract)Google Scholar
  138. 138.
    Barker GJ, Schreiber W, Gass A, et al. (1997) Standardising magnetisation transfer ratio measurements between MR scanners from different manufacturers. In: Proceedings of the International Society of Magnetic Resonance in Medicine 3: 1556 (abstract)Google Scholar
  139. 139.
    Kidd D, Thorpe JW, Thompson AJ, et al. (1993) Spinal cord MRI using multi-array coils and fast spin echo. II. Findings in multiple sclerosis. Neurology 43: 2632–2637PubMedCrossRefGoogle Scholar
  140. 140.
    Thorpe JW, Kidd D, Moseley IF, et al. (1996) Serial gadolinium-enhanced MRI of the brain and spinal cord in early relapsing-remitting multiple sclerosis. Neurology 46: 373–378PubMedCrossRefGoogle Scholar
  141. 141.
    Thorpe JW, Kidd D, Moseley IF, et al. (1996) Spinal MRI in patients with suspected multiple sclerosis and negative brain MRI. Brain 119: 709–714PubMedCrossRefGoogle Scholar
  142. 142.
    Filippi M, Campi A, Colombo B, et al. (1996) A spinal cord MRI study of benign and secondary progressive multiple sclerosis. J Neurol 243: 502–505PubMedCrossRefGoogle Scholar
  143. 143.
    Losseff NA, Webb SL, O’Riordan JI, et al. (1996) Spinal cord atrophy and disability in multiple sclerosis: A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 119: 701–708PubMedCrossRefGoogle Scholar
  144. 144.
    Losseff NA, Stevenson VL, Miller DH, et al. (1996) Spinal cord atrophy and disability in multiple sclerosis: A serial MRI study. Eur J Neurol 3(Suppl 4): 2 (abstract)Google Scholar
  145. 145.
    Stevenson VL, Leary SM, Losseff NA, et al. (1998) Spinal cord atrophy and disability in multiple sclerosis: A longitudinal study. Neurology (in press)Google Scholar
  146. 146.
    Silver NC, Barker GJ, Losseff NA, et al. (1997) Magnetisation transfer ratio measurement in the cervical spinal cord: A preliminary study in multiple sclerosis. Neuroradiology 39: 441–445PubMedCrossRefGoogle Scholar
  147. 147.
    Mathias JM, Tofts PS, Losseff NA (1998) Quantification of pathological changes within the spinal cord due to multiple sclerosis (MS) using texture analysis. In: Proceedings of the International Society of Magnetic Resonance in Medicine 2:1336 (abstract)Google Scholar
  148. 148.
    Losseff NA, Wang L, Lai HM, et al. (1996) Progressive cerebral atrophy in multiple sclerosis. A serial study. Brain 119: 2009–2019PubMedCrossRefGoogle Scholar
  149. 149.
    Fox NC, Freeborough PA (1997) Brain atrophy progression measured from registered serial MRI: Validation and application to Alzheimer’s disease. J Magn Reson Imaging 7: 1069–1075PubMedCrossRefGoogle Scholar
  150. 150.
    Mastronardo G, Rocca MA, Comi G, et al. (1998) Quantitative volumetric analysis of brain MRI from patients with multiple sclerosis. In: Proceedings of the International Society of Magnetic Resonance in Medicine 2:1315 (abstract)Google Scholar
  151. 151.
    Arnold DL, Matthews PM, Francis G, et al. (1990) Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: Assessment of the load of disease. Magn Reson Med 14: 154–159PubMedCrossRefGoogle Scholar
  152. 152.
    Davie CA, Barker GJ, Webb S, et al. (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 118:1583–1592PubMedCrossRefGoogle Scholar
  153. 153.
    Davie CA, Hawkins CP, Barker GJ, et al. (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117: 49–58PubMedCrossRefGoogle Scholar
  154. 154.
    De Stefano N, Matthews PM, Antel JP, et al. (1995) Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 38: 901–909PubMedCrossRefGoogle Scholar
  155. 155.
    Narayana PA, Doyle TJ, Lai D, et al. (1998) Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol 43: 56–71PubMedCrossRefGoogle Scholar
  156. 156.
    Larsson HBW, Christianson P, Jenson M, et al. (1991) Localized in vivo proton spectroscopy in the brain of patients with multiple sclerosis. Magn Reson Med 22: 23–31PubMedCrossRefGoogle Scholar
  157. 157.
    Grossman RI, Lenkinski RE, Ramer KN, et al. (1992) MR proton spectroscopy in multiple sclerosis. AJNR Am J Neuroradiol 13: 1535–1543PubMedGoogle Scholar
  158. 158.
    Kidd D, Barker GJ, Tofts PS, et al. (1997) The transverse magnetisation decay characteristics of longstanding lesions and normal-appearing white matter in multiple sclerosis. J Neurol 244:125–130PubMedCrossRefGoogle Scholar
  159. 159.
    Horsfield MA, Lai M, Webb SL, et al. (1996) Apparent diffusion coefficients in benign and secondary progressive multiple sclerosis by nuclear magnetic resonance. Magn Reson Med 36: 393–400PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • P. D. Molyneux
    • 1
  • D. H. Miller
    • 1
  1. 1.NMR Research Unit, Institute of NeurologyNational HospitalLondonUK

Personalised recommendations