Advertisement

Standardisation, Optimisation and Organisation of Magnetic Resonance Imaging for Monitoring Clinical Trials

  • M. A. Horsfield
Conference paper
Part of the Topics in Neuroscience book series (TOPNEURO)

Abstract

The use of magnetic resonance imaging (MRI) in clinical trials for multiple sclerosis (MS) was pioneered by Paty et al. [1] at the University of British Columbia, Canada, following studies of the correlation of the MRI appearance of demyelinating lesions with both animal models and postmortem material [2, 3]. Without this ground-breaking work, much of the testing of new therapeutic agents seen today would be severely retarded, with much longer assessment periods, and a much more difficult pathway of the drug from laboratory to market.

Keywords

Magnetic Resonance Imaging Multiple Sclerosis Lesion Volume Multiple Scle Lesion Magnetic Field Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Paty DW, Li DKB, the UBC MS/MRI Study Group, the IFNb Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43: 662–667PubMedCrossRefGoogle Scholar
  2. 2.
    Stewart WA, Hall LD, Berry K, Paty DW (1984) Correlation between NMR scan and brain slice data in multiple sclerosis. Lancet ii: 412Google Scholar
  3. 3.
    Stewart WA, Alvord EC, Hruby S, et al. (1991) Magnetic resonance imaging of experimental allergic encephalomyelitis in primates. Brain 114: 1069–1096PubMedCrossRefGoogle Scholar
  4. 4.
    Filippi M, Horsfìeld MA, Ader HJ, et al. (1998) Guidelines for using quantitative meas of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann Neurol 43: 499–506PubMedCrossRefGoogle Scholar
  5. 5.
    Edelstein WA, Glover GH, Hardy CJ, Redington RW (1986) The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3: 604–618PubMedCrossRefGoogle Scholar
  6. 6.
    van Walderveen MAA, Barkhof F, Hommes OR, et al. (1995) Correlating MRI and clinical disease activity in multiple sclerosis: Relevance of hypointense lesions on short TR/short TE (T1-weighted) spin-echo images. Neurology 45: 1684–1690PubMedCrossRefGoogle Scholar
  7. 7.
    van Buchem MA, McGowan JC, Kolson DL, et al. (1996) Quantitative volumetric magnetization transfer analysis in multiple sclerosis: Estimation of macroscopic and microscopic disease burden. Magn Reson Med 36: 632–636PubMedCrossRefGoogle Scholar
  8. 8.
    Barker GJ, Tofts PS (1992) Semiautomated quality assurance for quantitative of magnetic resonance imaging. Magn Reson Imaging 10: 585–595PubMedCrossRefGoogle Scholar
  9. 9.
    Filippi M, van Waesberghe JH, Horsfield MA, et al. (1997) Interscanner\ variation in brain MRI lesion load measurements in MS: Implications for clinical trials. Neurology 49: 371–377PubMedCrossRefGoogle Scholar
  10. 10.
    Kamber M, Shinghal R, Collins DL, et al. (1995) Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images. IEEE Trans Med Imag 14: 442–453CrossRefGoogle Scholar
  11. 11.
    Bottomley PA, Hardy CJ, Argersinger RE, Allen-Moore G (1987) A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz. Med Phys 14: 425–448CrossRefGoogle Scholar
  12. 12.
    Thorpe JW, Halpin SF, MacManus DG, et al. (1994) A comparison between fast and conventional spin-echo in the detection of multiple sclerosis lesions. AJNR Am J Neuroradiol 18:959–963Google Scholar
  13. 13.
    Rovaris M, Gawne-Cain ML, Wang L, Miller DH (1997) A comparison of conventional and fast spin-echo sequences for the measurement of lesion load in multiple sclerosis using a semi-automated contouring technique. Neuroradiology 39: 161–165PubMedCrossRefGoogle Scholar
  14. 14.
    Simmons A, Tofts PS, Barker GJ, Arridge SR (1994) Sources of intensity nonuniformity in spin echo images at 1.5 T. Magn Reson Med 32: 121–128CrossRefGoogle Scholar
  15. 15.
    Rydberg JN, Reiderer SJ, Rydberg CH, Jack CR (1995) Contrast optimisation of fluidattenuated inversion recovery (FLAIR) imaging. Magn Reson Med 34: 868–877PubMedCrossRefGoogle Scholar
  16. 16.
    Barker GJ, Schreiber W, Gass A, et al. (1997) Standardising magnetisation transfer ratio measurements between MR scanners from different manufacturers. In: Proceedings of the International Society of Magnetic Resonance Medicine 3:1556 (abstract) 1556Google Scholar
  17. 17.
    Losseff NA, Wang L, Lai M, et al. (1996) Progressive cerebral brain atrophy in multiple sclerosis: A serial MRI study. Brain 119: 2009–2019PubMedCrossRefGoogle Scholar
  18. 18.
    Filippi M, Colombo B, Rovaris M, et al. (1997) A longitudinal magnetic resonance imaging study of the cervical cord in multiple sclerosis. J Neuroimaging 7: 78–80PubMedGoogle Scholar
  19. 19.
    Horsfield MA, Larsson HBW, Jones DK, Gass A (1998) Diffusion magnetic resonance imaging in multiple sclerosis. J Neurol Neurosurg Psychiatry S64: 80–84Google Scholar
  20. 20.
    Miller DH, Barkhof F, Berry I, et al. (1991) Magnetic resonance imaging in monitoring the treatment of multiple sclerosis: Concerted action guidelines. J Neurol Neurosurg Psychiatry 54: 683–688PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Bedell BJ, Narayana PA, Wolinsky JS (1997) A dual approach for minimising false lesion classifications on magnetic resonance images. Magn Reson Med 37: 94–102PubMedCrossRefGoogle Scholar
  22. 22.
    van Walderveen MAA, Kamphorst W, Scheltens P, et al. (1998) Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 50: 1282–1288PubMedCrossRefGoogle Scholar
  23. 23.
    Dousset V, Grossman RI, Ramer NK, et al. (1992) Experimental allergic encephalomyelitis and multiple sclerosis: Lesion characterization with magnetization transfer imaging. Radiology 182:483–491PubMedCrossRefGoogle Scholar
  24. 24.
    Stone LA, Frank JA, Albert PS, et al. (1997) Characterization of MRI response to treatment with interferon beta-1b: Contrast enhancing MRI lesion frequency as a primary outcome measure. Neurology 49: 863–869CrossRefGoogle Scholar
  25. 25.
    Stone LA, Albert PS, Smith ME, et al. (1995) Changes in the amount of diseased white matter over time in patients with relapsing-remitting multiple sclerosis. Neurology 45: 1808–1814PubMedCrossRefGoogle Scholar
  26. 26.
    Mitchell JR, Karlik SJ, Lee DH, Fenster A (1994) Computer-assisted identification and quantification of multiple-sclerosis lesions in MR imaging volumes in the brain. J Magn Reson Imaging 4: 197–208PubMedCrossRefGoogle Scholar
  27. 27.
    Wolinsky JS, Narayana PA (1998) Phase 3 North American trial of roquinimex (linomide) in relapsing-remitting (RR) and secondary progressive (SP) multiple sclerosis (MS): MRI findings. Neurology 50: 4004 (abstract)Google Scholar
  28. 28.
    Filippi M, Yousry T, Baratti C, et al. (1996) Quantitative assessment of MRI lesion load in multiple sclerosis. A comparison of conventional spin-echo with fast fluid-attenuated inversion recovery. Brain 119: 1349–1355PubMedCrossRefGoogle Scholar
  29. 29.
    Udupa JK, Wei L, Samarasekera S, et al. (1996) Multiple sclerosis lesion qualification using fuzzy-connectedness principle. IEEE Trans Med Imaging 16: 598–609CrossRefGoogle Scholar
  30. 30.
    Hajnal JV, Saeed N, Soar EJ, et al. (1995) A registration and interpolation procedure for subvoxel matching of serially acquired MR images. J Comput Assist Tomogr 19: 289–296PubMedCrossRefGoogle Scholar
  31. 31.
    Filippi M, Gawne-Cain ML, Gasperini C, et al. (1997) The effect of training and different measurement strategies on the reproducibility of brain MRI lesion load measurements in multiple sclerosis. Neurology 50: 238–244CrossRefGoogle Scholar
  32. 32.
    Bidgood WD, Horii SC (1992) Introduction to the ACR-NEMA DICOM standard. Radiographics 12: 345–355PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • M. A. Horsfield
    • 1
  1. 1.Division of Medical PhysicsUniversity of Leicester, Leicester Royal InfirmaryLeicesterUK

Personalised recommendations