The Role of Protons in the Activation of Primary Sensory Neurons

  • P. Geppetti
  • S. Amadesi
  • M. Tognetto
  • F. M. L. Ricciardolo


Primary sensory neurons with cell bodies localized to trigeminal, vagal and dorsal root ganglia (DRG) consist of different subpopulations of pseudounipolar neurons distinguished according to their phenotype, velocity of impulse conduction, neurotransmitter content and type of stimulus that they recognize. Among these diverse subpopulations, a group of neurons exists that are uniquely stimulated by capsaicin and that express and release from their central and peripheral terminals neuropeptide transmitters. Capsaicin, better known as the hot principle contained in the plants of the genus Capsicum, is a vanilloid derivative that exerts multiple and specific actions on primary sensory neurons[1]. These actions somehow resemble those exerted by guanethidine on sympathetic neurons. At low concentrations, capsaicin excites neurons of in vitro preparations by promoting cation influx (Na1 and Ca1) into the nerve terminal. This event initiates a propagated action potential that orthodromically invades the neurons, thus conveying the sensory information to the lamina I and II of the dorsal spinal cord and medulla oblongata. The consequence of this effect (often appreciated when small quantities of capsaicin are added to food) is a hot and burning sensation that usually fades in a few minutes without any appreciable tissue damage.


Dorsal Root Ganglion Primary Sensory Neuron Neurogenic Inflammation Plasma Extravasation Dural Venous Sinus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holzer P (1991) Capsaicin: cellular targets, mechanisms of actions, and selectivity for thin sensory neurons. Pharmacol Rev 43:143–201PubMedGoogle Scholar
  2. 2.
    Wood JN, Winter J, James IF, Rang HP, Yeats J, Bevan S ( 1988) Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture. J Neurosci 8:3208–3220PubMedGoogle Scholar
  3. 3.
    Geppetti P (1996) Capsaicin as a drug. In: Geppetti P, Holzer P (eds) Neurogenic inflammation. CRC, Boca Raton, 289–298Google Scholar
  4. 4.
    Dray A, Bettaney J, Forster P (1989) Capsaicin desensitization of peripheral nociceptive fibres does not impair sensitivity to other noxious stimuli. Neurosci Lett 99:50–54PubMedCrossRefGoogle Scholar
  5. 5.
    Dray A (1992) Mechanism of action of capsaicin-like molecules on sensory neurons. Life Sci 51:1759–1765PubMedCrossRefGoogle Scholar
  6. 6.
    Holzer P (1988) Local effector functions of capsaicin-sensitive sensory nerves endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24:739–768PubMedCrossRefGoogle Scholar
  7. 7.
    Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298:240–244PubMedCrossRefGoogle Scholar
  8. 8.
    McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393:333–339PubMedCrossRefGoogle Scholar
  9. 9.
    Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I (1985) Calcitonin generelated peptide is a potent vasodilator. Nature 313:54–56PubMedCrossRefGoogle Scholar
  10. 10.
    Maggi C, Giuliani S (1991) The neurotransmitter role of calcitonin gene-related peptide in the rat and guinea-pig ureter: effect of calcitonin gene-related peptide antagonist and species-related differences in the action of omega conotoxin on calcitonin gene-related peptide release from primary afferents. Neuroscience 43:261–268PubMedCrossRefGoogle Scholar
  11. 11.
    Geppetti P, Patacchini R, Cecconi R, Tramontana M, Meini S, Romani A, Nardi M, Maggi CA (1990) Effects of capsaicin, tachykinins, calcitonin gene-related peptide and bradykinin in the pig iris sphincter muscle. Naunyn Schmiedebergs Arch Pharmacol 341:301–307PubMedCrossRefGoogle Scholar
  12. 12.
    Hall JM, Brain SD (1996) Pharmacology of calcitonin gene-related peptide. In: Geppetti P, Holzer P (eds) Neurogenic inflammation. CRC, Boca Raton, 101–114Google Scholar
  13. 13.
    Otsuka M, Yoshioka K (1993) Neurotransmitter functions of mammalian tachykinins. Physiol Rev 73:229–308PubMedGoogle Scholar
  14. 14.
    Regoli D, Boudon A, Fauchere J-L (1994) Receptors and antagonists for substance P and related peptides. Pharmacol Rev 46:551–599PubMedGoogle Scholar
  15. 15.
    Maggi CA, Schwartz TW (1997) The dual nature of the tachykinin NK1 receptor. Trends Pharmacol Sci 18:351–355PubMedGoogle Scholar
  16. 16.
    Advenier C, Daoui S, Cui YY, Lagente V, Emonds-Alt X (1996) Inhibition by the tachykinin NK3 receptor antagonist, SR 142801, of substance P-induced microvascular leakage hypersensitivity and airway hyperresponsiveness in guinea-pigs. Am J Respir Crit Care Med 153:A163Google Scholar
  17. 17.
    Szolcsanyi J (1984) Capsaicin-sensitive chemoceptive neural system with dual sensory-efferent function. In: Chahl LA, Szolcsanyi J, Lembeck F (ed) Antidromic vasodilatation and neurogenic inflammation. Akademiai Kiado, Budapest, 27–56Google Scholar
  18. 18.
    Lundberg JM, Saria A (1983) Capsaicin induced desensitization of the airway mucosa to cigarette smoke, mechanical and chemical irritants. Nature 302:251–253PubMedCrossRefGoogle Scholar
  19. 19.
    Delay-Goyet P, Lundberg JM (1991) Cigarette smoke-induced airway oedema is blocked by the NK1 antagonist, CP-96,345. Eur J Pharmacol 203:157–158PubMedCrossRefGoogle Scholar
  20. 20.
    Bertrand C, Geppetti P, Graf PD, Nadel JA (1993) Involvement of neurogenic inflammation in antigen-induced bronchoconstriction in guinea pigs. Am J Physiol 265:L507–L511PubMedGoogle Scholar
  21. 21.
    Kudlacz EM, Knippenberg RW, Logan DE, Burkholder TP (1996) Effect of MDL 105,212, a nonpeptide NK-l/NK-2 receptor antagonist in an allergic guinea pig model. J Pharmacol Exp Ther 279:732–739PubMedGoogle Scholar
  22. 22.
    Yoshihara S, Chan B, Yamawaki I, Geppetti P, Riccardolo FLM, Massion P, Nadel JA (1995) Plasma extravasation in the rat trachea induced by cold air is mediated by tachykinin release from sensory nerves. Am J Respir Crit Care Med 151:1011–1017PubMedGoogle Scholar
  23. 23.
    Yoshihara S, Geppetti P, Hara M, Linden A, Ricciardolo FL, Chan B, Nadel JA (1996) Cold air-induced bronchoconstriction is mediated by tachykinin and kinin release in guinea pigs. Eur J Pharmacol 296:291–296PubMedCrossRefGoogle Scholar
  24. 24.
    Maggi C (1991) The pharmacology of the efferent function of sensory nerves. J Auton Pharmacol 11:173–208PubMedCrossRefGoogle Scholar
  25. 25.
    Bevan S, Geppetti P (1994) Protons, small stimulants of capsaicin-sensitive sensory nerves. Trends Neurosci 17:509–512PubMedCrossRefGoogle Scholar
  26. 26.
    Arvier PT, Chahl LA, Ladd RJ (1977) Modification by capsaicin and compound 48/80 of dye leakage induced by irritants in the rat. Br J Pharmacol 59:61–68PubMedCrossRefGoogle Scholar
  27. 27.
    Martling C-R, Lundberg JM (1988) Capsaicin sensitive afferents contribute to acute airway edema following tracheal instillation of hydrochloric acid or gastric juice in the rat. Anesthesiology 68:350–356PubMedCrossRefGoogle Scholar
  28. 28.
    Geppetti P, Del Bianco E, Patacchini R, Santicioli P, Maggi CA, Tramontana M (1991) Low pH-induced release of calcitonin gene-related peptide from capsaicin-sensitive sensory nerves: mechanism of action and biological response. Neuroscience 41:295–301PubMedCrossRefGoogle Scholar
  29. 29.
    Geppetti P, Tramontana M, Patacchini R, Del Bianco E, Santicioli P, Maggi CA (1990) Neurochemical evidence for the activation of the ‘efferent’ function of capsaicin-sensitive nerves by lowering of the pH in the guinea-pig urinary bladder. Neurosci Lett 114:101–106PubMedCrossRefGoogle Scholar
  30. 30.
    Geppetti P, Tramontana M, Evangelista S, Renzi D, Maggi CA, Fusco BM, Del Bianco E (1991) Differential effect on neuropeptide release of different concentrations of hydrogen ions on afferent and intrinsic neurons of the rat stomach. Gastroenterology 101:1505–1511PubMedGoogle Scholar
  31. 31.
    Franco-Cereceda A, Lundberg JM (1992) Capsazepine inhibits low pH-and lactic acid-evoked release of calcitonin gene-related peptide from sensory nerves in guinea-pig heart. Eur J Pharmacol 221:183–184PubMedCrossRefGoogle Scholar
  32. 32.
    Lou YP, Lundberg JM (1992) Inhibition of low pH evoked activation of airway sensory nerves by capsazepine, a novel capsaicin-receptor antagonist. Biochem Biophys Res Commun 189:537–544PubMedCrossRefGoogle Scholar
  33. 33.
    Santicioli P, Del Bianco E, Geppetti P, Maggi CA (1992) Release of calcitonin generelated peptide-like immunoreactivity (CGRP-LI) from rat isolated soleus muscle by low pH, capsaicin and potassium. Neurosci Lett 143:19–22PubMedCrossRefGoogle Scholar
  34. 34.
    Fanciullacci M, Tramontana M, Del Bianco E, Alessandri M, Geppetti P (1991) Low pH medium induces calcium dependent release of CGRP from sensory nerves of guinea-pig durai venous sinuses. Life Sci 49:PL27–30CrossRefGoogle Scholar
  35. 35.
    Del Bianco E, Santicioli P, Tramontana M, Maggi CA, Cecconi R, Geppetti P (1991) Different pathways by which extracellular Ca2+ promotes calcitonin gene-related peptide release from central terminals of capsaicin-sensitive afferents of guineapigs: effect of capsaicin high K+ and low pH media. Brain Res 566:46–53PubMedCrossRefGoogle Scholar
  36. 36.
    Bevan S, Yeats J (1991) Protons activate a cation conductance in a sub-population of rat dorsal root ganglion neurones. J Physiol (Lond) 433:145–161Google Scholar
  37. 37.
    Steen KH, Reeh PW (1993) Sustained graded pain and hyperalgesia from harmless experimental tissue acidosis in human skin. Neurosci Lett 154:113–116PubMedCrossRefGoogle Scholar
  38. 38.
    Bevan S, Hothi S, Hughes G, James IF, Rang HP, Shah K, Walpole CS, Yeats JC (1992) Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin. Br J Pharmacol 107:544–552PubMedCrossRefGoogle Scholar
  39. 39.
    Walpole CS, Bevan S, Bovermann G, Boelsterli JJ, Breckenridge R, Davies JW, Hughes GA, James I, Oberer L, Winter J, et al (1994) The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin. J Med Chem 37:1942–1954PubMedCrossRefGoogle Scholar
  40. 40.
    Santicioli P, Del Bianco E, Figini M, Bevan S, Maggi CA (1993) Effect of capsazepine on the release of calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) induced by low pH, capsaicin and potassium in rat soleus muscle. Br J Pharmacol 110:609–612PubMedCrossRefGoogle Scholar
  41. 41.
    Belvisi MG, Miura M, Stretton D, Barnes PJ (1992) Capsazepine as a selective antagonist of capsaicin-induced activation of C-fibres in guinea-pig bronchi. Eur J Pharmacol 215:341–344PubMedCrossRefGoogle Scholar
  42. 42.
    Satoh H, Lou Y-P, Lundberg JM (1993) Inhibitory effects of capsazepine and SR 48968 on citric acid-induced bronchoconstriction in guinea-pigs. Eur J Pharmacol 236:367–372PubMedCrossRefGoogle Scholar
  43. 43.
    Liu L, Simon SA (1994) A rapid capsaicin-activated current in rat trigeminal ganglion neurons. Proc Natl Acad Sci U S A 91:738–741PubMedCrossRefGoogle Scholar
  44. 44.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824PubMedCrossRefGoogle Scholar
  45. 45.
    Stevens CR, Williams RB, Farrell AJ, Blake DR (1991) Hypoxia and inflammatory synovitis: observations and speculation. Ann Rheum Dis 50:124–132PubMedCrossRefGoogle Scholar
  46. 46.
    Jacobus WE, Taylor GJT, Hollis DP, Nunnally RL (1977) Phosphorus nuclear magnetic resonance of perfused working rat hearts. Nature 265:756–758PubMedCrossRefGoogle Scholar
  47. 47.
    Holzer P (1998) Neural emergency system in the stomach. Gastroenterology 114:823–839PubMedCrossRefGoogle Scholar
  48. 48.
    Sontag SJ (1997) Gastroesophageal reflux and asthma. Am J Med 103:84S-90SGoogle Scholar
  49. 49.
    Simpson WG (1995) Gastroesophageal reflux disease and asthma: diagnosis and management. Arch Intern Med 155:798–804PubMedCrossRefGoogle Scholar
  50. 50.
    Ricciardolo FLM, Rado V, Fabbri LM, Sterk PJ, Di Maria GU, Geppetti P (1999) Bronchoconstriction induced by citric acid inhalation in guinea pigs. Role of tachykinins, bradykinin and nitric oxide. Am J Respir Crit Care Med 159:557–562PubMedGoogle Scholar
  51. 51.
    Fischer A, Canning BJ, Undem BJ, Kummer W (1998) Evidence for an esophageal origin of VIP-IR and NO synthase-IR nerves innervating the guinea pig trachealis: a retrograde neuronal tracing and immunohistochemical analysis. J Comp Neurol 394:326–334PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • P. Geppetti
    • 1
  • S. Amadesi
    • 1
  • M. Tognetto
    • 1
  • F. M. L. Ricciardolo
    • 1
  1. 1.Department of Experimental and Clinical Medicine, Pharmacology UnitUniversity of FerraraItaly

Personalised recommendations