Pathophysiological Determinants of Gastroesophageal Reflux, and the Role of Esophageal and Airway Receptors

  • G. Sant’Ambrogio
  • F. B. Sant’Ambrogio


Although the human body is well equipped to counteract the occurrence of a reflux of gastric contents into the esophagus and possibly into the more proximal airway, regurgitation does occur, especially in elderly subjects and in newborns. In healthy subjects, physiological mechanisms offer a well-developed degree of protection against gastroesophageal reflux (GER) as shown by its absence even in subjects maintained in a head-down posture [1]. The most common disorder leading to GER is a functional or structural abnormality of the lower esophageal sphincter affecting either one of its two components: smooth muscle or striated muscle from the crural portion of the diaphragm [1].


Gastroesophageal Reflux Afferent Ending Lower Oesophageal Sphincter Airway Occlusion Smooth Muscle Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mittal RK, Balaban DH (1997) The esophagogastric junction. N Engl J Med 336:924–932PubMedCrossRefGoogle Scholar
  2. 2.
    Boyle JT, Tuchman DN, Altschuler SM, Nixon TE, Pack AI, Cohen S (1985) Mechanisms for the association of gastroesophageal reflux and bronchospasm. Am Rev Respir Dis 131:S16–S20PubMedGoogle Scholar
  3. 3.
    Harding SM, Richter JE (1997) The role of gastroesophageal reflux in chronic cough and asthma. Chest 111:1389–1402PubMedCrossRefGoogle Scholar
  4. 4.
    Kahrilas PJ (1996) Gastroesophageal reflux disease. JAMA 276:983–988PubMedCrossRefGoogle Scholar
  5. 5.
    Koufman JA (1991) The otolaryngologic manifestations of gastroesophageal reflux disease (GERD): a clinical investigation of 255 patients using ambulatory 24-hour pH monitoring and an experimental investigation of the role of acid and pepsin in the development of laryngeal injury. Laryngoscope 101:1–78PubMedCrossRefGoogle Scholar
  6. 6.
    Schan CA, Harding SM, Haile JM, Bradley LA, Richter JE (1994) Gastroesophageal reflux-induced bronchoconstriction. An intraesophageal acid infusion study using state-of-the-art technology. Chest 106:731–737Google Scholar
  7. 7.
    Tuchman DN, Boyle JT, Pack AI, Scwartz J, Kokonos M, Spitzer AR, Cohen S (1984) Comparison of airway responses following tracheal or esophageal acidification in the cat. Gastroenterology 87:872–881PubMedGoogle Scholar
  8. 8.
    Wesseling G, Brummer RJ, Wouters EF, ten Velde GP (1993) Gastric asthma? No change in respiratory impedance during intraesophageal acidification in adult asthmatics. Chest 104:1733–1736PubMedCrossRefGoogle Scholar
  9. 9.
    Donnelly RJ, Berrisford RG, Jack CI, Tran JA, Evans CC (1993) Simultaneous tracheal and esophageal pH monitoring: investigating reflux-associated asthma. Ann Thorac Surg 56:1029–1034PubMedCrossRefGoogle Scholar
  10. 10.
    Paintal AS (1963) Vagal afferent fibres. In: Kramer K, Krayer O, Lehnartz E, Murait A, Weber HH (eds) Ergebnisse der Physiologie, Band 52. Springer, Berlin Heidelberg New York, 74–156Google Scholar
  11. 11.
    Andrews PL, Lang KM (1982) Vagal afferent discharge from mechanoreceptors in the lower oesophagus of the ferret. J Physiol (Lond) 322:29PGoogle Scholar
  12. 12.
    Clerc N, Mei N (1983) Vagal mechanoreceptors located in the lower oesophageal sphincter of the cat. J Physiol (Lond) 336:487–498Google Scholar
  13. 13.
    Falempin M, Mei N, Rousseau JP (1978) Vagal mechanoreceptors of the inferior thoracic oesophagus, the lower oesophageal sphincter and the stomach in the sheep. Pflügers Arch 373:25–30PubMedCrossRefGoogle Scholar
  14. 14.
    Satchell PM (1984) Canine oesophageal mechanoreceptors. J Physiol (Lond) 346:287–300Google Scholar
  15. 15.
    Sekizawa S-I, Ishikawa T, Sant’Ambrogio FB, Sant’Ambrogio G (1998) Vagal esophageal receptors in the anesthetized dog. FASEB J 12:A782Google Scholar
  16. 16.
    Mei N (1970) Mécanorécepteurs vagaux digestifs chez le chat. Exp Brain Res 11:502–514PubMedGoogle Scholar
  17. 17.
    Cherniack NS, Haxhiu MA, Mitra J, Strohl K, Van Lunteren E (1984) Responses of upper airway, intercostal and the diaphragm muscle activity to stimulation of oesophageal afferents. J Physiol (Lond) 349:15–25Google Scholar
  18. 18.
    Ayres JG, Miles JF (1996) Oesophageal reflux and asthma. Eur Respir J 9:1073–1078PubMedCrossRefGoogle Scholar
  19. 19.
    Mays EE (1976) Intrinsic asthma in adults. Association with gastroesophageal reflux. JAMA 236:2626–2628CrossRefGoogle Scholar
  20. 20.
    Olson NR (1991) Laryngopharyngeal manifestations of gastroesophageal reflux disease. Otolaryngol Clin North Am 24:1201–1213PubMedGoogle Scholar
  21. 21.
    Sataloff RT, Speigel JR, Hawkshaw M, Rosen DC (1993) Gastroesophageal reflux laryngitis. Ear Nose Throat J 72:113–114PubMedGoogle Scholar
  22. 22.
    Ishikawa T, Sekizawa S-I, Sant’Ambrogio FB, Sant’Ambrogio G (1998) Effect of esophageal vs. laryngeal HC1-pepsin instillations on airway smooth muscle in adult dogs. FASEB J 12:A784Google Scholar
  23. 23.
    Ishikawa T, Sekizawa S, Sant’Ambrogio FB, Sant’Ambrogio G (1998) Endotracheal cuff pressure as an index of airway smooth muscle activity: comparison with total lung resistance. Respir Physiol 112:175–184PubMedCrossRefGoogle Scholar
  24. 24.
    Tatár M, Pécová R (1996) The effect of experimental gastroesophageal reflux on the cough in anesthetized cats. Bratisl Lek Listy 5:284–288Google Scholar
  25. 25.
    Sant’Ambrogio G, Tsubone H, Sant’Ambrogio FB (1995) Sensory information from the upper airway: role in the control of breathing. Respir Physiol 102:1–16CrossRefGoogle Scholar
  26. 26.
    Kuna ST, Sant’Ambrogio G (1991) Pathophysiology of upper airway closure during sleep. JAMA 266:1384–1389PubMedCrossRefGoogle Scholar
  27. 27.
    Mathew OP, Abu-Osba YK, Thach BT (1982) Influence of upper airway pressure changes on genioglossus muscle respiratory activity. J Appl Physiol 52:438–444PubMedGoogle Scholar
  28. 28.
    Sant’Ambrogio FB, Mathew OP, Clark WD, Sant’Ambrogio G (1985) Laryngeal influences on breathing pattern and posterior cricoarytenoid muscle activity. J Appl Physiol 58:1298–1304Google Scholar
  29. 29.
    Van Lunteren E, Van de Graaff WB, Parker DM, Mitra J, Haxhiu MA, Strohl KP, Cherniack NS (1984) Nasal and laryngeal reflex responses to negative upper airway pressure. J Appl Physiol 56:746–752PubMedCrossRefGoogle Scholar
  30. 30.
    Chodosh PL (1977) Gastro-esophago-pharyngeal reflux. Laryngoscope 87:1418–1427PubMedCrossRefGoogle Scholar
  31. 31.
    Sant’Ambrogio FB, Sant’Ambrogio G, Chung K (1998) Effects of HCl-pepsin laryngeal instillations on upper airway patency-maintaining mechanisms. J Appl Physiol 84:1299–1304CrossRefGoogle Scholar
  32. 32.
    Feinberg MJ, Knebl J, Tully J, Segall L (1990) Aspiration in the elderly. Dysphagia 5:61–71PubMedCrossRefGoogle Scholar
  33. 33.
    Hagen J, Deitel M, Khanna RK, Lives R (1987) Gastroesophageal reflux in the massively obese. Int Surg 72:1–3PubMedGoogle Scholar
  34. 34.
    Nebel OT, Fornes MS, Castell DO (1976) Symptomatic gastroesophageal reflux: incidence and precipitating factors. Am J Dig Dis 21:953–956PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • G. Sant’Ambrogio
    • 1
  • F. B. Sant’Ambrogio
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations