Pulmonary Hypertension

  • J. O. C. AulerJr
  • M. J. C. Carmona
Conference paper


Acute respiratory distress syndrome (ARDS) presents a combination of nonspecific alveolar damage and extensive pulmonary vascular disease [1]. Noncardiogenic pulmonary oedema, hypoxaemia, decreased lung compliance, increased pulmonary artery pressures, and the requirement for mechanical ventilation are important signs of this syndrome [2]. Pulmonary artery hypertension and increased pulmonary vascular resistance have been identified as markers of the severity of ARDS and are related to vascular thrombosis [3] and pulmonary vasoconstriction.


Nitric Oxide Pulmonary Hypertension Acute Respiratory Distress Syndrome Pulmonary Artery Pressure Pulmonary Vascular Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashbaugh D, Bigelow D, Petty T et al (1967) Acute respiratory distress in adults. Lancet 2:319PubMedCrossRefGoogle Scholar
  2. 2.
    Fowler AA, Hamman RF, Zerbe GO et al (1985) Adult respiratory distress syndrome: prognosis after onset. Am Rev Resp Dis 132:472PubMedGoogle Scholar
  3. 3.
    Malik AB (1990) Pulmonary microembolism and lung vascular injury. Eur Respir J 3:499sGoogle Scholar
  4. 4.
    Stuart R, Braunwald E, Grossman W (1997) Pulmonary hypertension. In: Braunwald E (ed) Heart disease, 5th edn, p 780Google Scholar
  5. 5.
    Zapol WM, Rimar S, Gillis N et al (1994) Nitric oxide and the lung. Am J Respir Crit Care Med 149:1375–1380PubMedGoogle Scholar
  6. 6.
    Sylvester JT, Gottlieb JE, Rock P et al (1986) Acute hypoxic responses. In: Bergofsky EH (ed) Abnormal pulmonary circulation, p 127Google Scholar
  7. 7.
    Auler Jr JOC, Ruiz Neto PP (1997) Treatment of pulmonary hypertension. In: Coriat P (ed) Clinical cardiovascular medicine in anaesthesia, p 213Google Scholar
  8. 8.
    Fishman AP, Fritts HW, Cournand A (1960) Effects of acute hypoxia and exercise on the pulmonary circulation. Circulation 22:204PubMedCrossRefGoogle Scholar
  9. 9.
    Bergofsky EH, Haas F, Porcelli R (1968) Determinations of the sensitive vascular sites from which hypoxia and hypercapnia elicit rises in pulmonary artery pressure. Fed Proc 27:1420PubMedGoogle Scholar
  10. 10.
    Fishman AP (1976) Hypoxia on the pulmonary circulation: how and where it acts. Circ Res 38:221PubMedCrossRefGoogle Scholar
  11. 11.
    Zapol WM, Kobayaki K, Snider MT et al (1977) Vascular obstruction causes pulmonary hypertension in severe acute respiratory syndrome. Chest 71:306PubMedGoogle Scholar
  12. 12.
    Snow RL, Davies P, Pontoppidan H et al (1982) Pulmonary vascular lesions of the adult respiratory distress syndrome. Am Rev Respir Dis 126:887PubMedGoogle Scholar
  13. 13.
    Tomashefski JF Jr, Davies P, Boggis C et al (1983) The pulmonary vascular lesions of the adult respiratory distress syndrome. Am J Pathol 112:112PubMedGoogle Scholar
  14. 14.
    Casey LC, Fletcher JR, Zmudka MI et al (1982) Prevention of endotoxin-induced pulmonary hypertension in primates by the use of a selective thromboxane synthetase inhibitor, OXY 1581. J Pharmacol Exp Ther 222:441PubMedGoogle Scholar
  15. 15.
    Paratt JR, Sturgess RM (1977) The possible roles of histamine, 5-hydroxytryptamine and prostaglandin F2alfa as mediators of the acute pulmonary effects of endotoxin. Br J Pharmacol 23:273Google Scholar
  16. 16.
    Linde LM, Simmons DH, Lewis N (1963) Pulmonary hemodynamics in respiratory acidosis in dogs. Am J Physiol 205:1008PubMedGoogle Scholar
  17. 17.
    Horwitz LD, Bishop VS, Stone HL (1968) Effects of hypercapnia on the cardiovascular system of conscious dogs. J Appl Physiol 25:346Google Scholar
  18. 18.
    Noble WH, Kay JC, Fisher JÁ (1981) The effect of PCO2 on hypoxic pulmonary vasoconstriction. Can Anaesth Soc J 28:422PubMedCrossRefGoogle Scholar
  19. 19.
    Weil P, Salisbury PF, State D (1957) Physiological factors influencing pulmonary artery pressure during separate perfusion of the systemic and pulmonary circulations in the dog. Am J Physiol 191:453PubMedGoogle Scholar
  20. 20.
    Frumin MJ, Epstein RM, Cohen G (1959) Apneic oxygenation in man. Anesthesiology 20:789PubMedCrossRefGoogle Scholar
  21. 21.
    Sechzer PH, Egbert LD, Linde HW et al (1960) Effect of CO2 inhalation on arterial pressure, ECG and plasma catecholamines and 17-OH corticosteroids in normal man. J Appl Physiol 15:454PubMedGoogle Scholar
  22. 22.
    Noble O, Folwle NO, Westcott RN et al (1951) The effect of norepinephrine upon pulmonary arteriolar resistance in man. J Clin Invest 30:517CrossRefGoogle Scholar
  23. 23.
    Baudouin SV, Evans TW (1993) Action of carbon dioxide on hypoxic pulmonary vasoconstriction in the rat lung: Evidence against specific endothelium-derived relaxing factor-mediated vasodilation. Crit Care Med 21:740PubMedCrossRefGoogle Scholar
  24. 24.
    Puybasset L, Stewart T, Rouby JJ et al (1994) Inhaled nitric oxide reverses the increase in pulmonary vascular resistance induced by permissive hypercapnia in patients with acute respiratory distress syndrome. Anesthesiology 80:1254PubMedCrossRefGoogle Scholar
  25. 25.
    Eddahib S, Adnot S, Carville C et al (1992) L-arginine restores endothelium-dependent relaxation in pulmonary circulation of chronically hypoxic rats. Am J Physiol 72:194Google Scholar
  26. 26.
    Dinh-Xuan AT, Higgenbottam TW, Clelland CA et al (1991) Impairment of endothelium-de-pendent pulmonary artery relaxation in chronic obstructive lung disease. N Engl J Med 324:1539PubMedCrossRefGoogle Scholar
  27. 27.
    Higgenbottam T, Cremona G (1993) Acute and chronic hypoxic pulmonary hypertension. Eur Respir J 8:1207Google Scholar
  28. 28.
    Falke K, Rossaint R, Pison U et al (1991) Inhaled nitric oxide selectively reduces pulmonary hypertension in severe ARDS and improves gas exchange as well as right heart ejection fraction: a case report. Am Rev Respir Dis 143:A248Google Scholar
  29. 29.
    Rossaint R, Gerlach H, Schmidt-Ruhnke H et al (1995) Efficacy of inhaled nitric oxide in patients with sever ARDS. Chest 107:1107PubMedCrossRefGoogle Scholar
  30. 30.
    Geralch H, Pappert D, Lewandowski K et al (1993) Long-term inhalation with evaluated low doses of nitric oxide for selective improvement of oxygenation in patients with adult respiratory distress syndrome. Intensive Care Med 19:443CrossRefGoogle Scholar
  31. 31.
    Gerlach H, Rossaint R, Pappert D et al (1993) Time course and dose-response of nitric oxide inhalation for systemic oxygenation and pulmonary hypertension in patients with adult respiratory distress syndrome. Eur J Clin Invest 23:499PubMedCrossRefGoogle Scholar
  32. 32.
    Cheifetz IM (1996) Nitric oxide improves transpulmonary vascular mechanics but does not change intrinsic right ventricular contractility in an acute respiratory distress syndrome model with permissive hypercapnia. Crit Care Med 24:1554PubMedCrossRefGoogle Scholar
  33. 33.
    Bigatelo LM, Hurford WE, Kacmarek RM et al (1994) Prolonged inhalation of low concentrations of nitric oxide in patients with severe adult respiratory distress syndrome. Anesthesiology 80:761CrossRefGoogle Scholar
  34. 34.
    Puybasset L, Rouby JJ, Mourgeon E et al (1995) Factors influencing cardiopulmonary effects of inhaled nitric oxide in acute respiratory failure. Am J Resp Crit Care Med 152:318PubMedGoogle Scholar
  35. 35.
    Langleben D, Demarchie M, Laporta D et al (1993) Endothelin-1 in acute lung injury and the adult respiratory distress syndrome. Am Rev Respir Dis 148:1646PubMedCrossRefGoogle Scholar
  36. 36.
    Zapol WM, Snider MT, Rie MA (1985) Pulmonary circulation during adult respiratory distress syndrome. In: Zapol WM, Falke KJ (eds) Acute respiratory failure. Dekker, New York, p209Google Scholar
  37. 37.
    Rich FR, Murph GD, Roos CM et al (1993) Inhaled nitric oxide: Selective pulmonary vasodilation in cardiac surgical patients. Anesthesiology 78:1028PubMedCrossRefGoogle Scholar
  38. 38.
    Krafft P, Fridrich P, Fitzgeral RD et al (1996) Effectiveness of nitric oxide inhalation in septic ARDS. Chest 109:486PubMedCrossRefGoogle Scholar
  39. 39.
    Melsom MN, Flatebo T, Kramer-Johansen J et al (1995) Both gravity and non-gravity dependent factors determine regional blood flow within the goat lung. Acta Physiol Scand 153:343PubMedCrossRefGoogle Scholar
  40. 40.
    Walther SM, Domino KB, Glenny RW et al (1997) Pulmonary blood flow distribution has a hilar-to peripheral gradient in awake, prone sheep. J Appl Physiol 82:678PubMedGoogle Scholar
  41. 41.
    Messent M, Sullivan K, Keogh BF et al (1992) Adult respiratory distress syndrome following cardiopulmonary bypass: incidence and prediction. Anaesthesia 47:267PubMedCrossRefGoogle Scholar
  42. 42.
    Matthay MA, Wiener-Kronish JP (1989) Respiratory management after cardiac surgery. Chest 95:424PubMedCrossRefGoogle Scholar
  43. 43.
    Auler Jr JOC, Carmona MJC, Bocchi EA et al (1996) Low doses of inhaled nitric oxide in heart transplant recipients. J Heart Lung Transplant 15:443Google Scholar
  44. 44.
    Hachenberg T, Tenling A, Nystrom SO et al (1994) Ventilation-perfusion inequality in patients undergoing cardiac surgery. Anesthesiology 80:509PubMedCrossRefGoogle Scholar
  45. 45.
    Carmona MJC, Auler Jr JOC (1998) Effects of inhaled nitric oxide on respiratory system mechanics, hemodynamics, and gas exchange after cardiac surgery. J Cardiothorac Vasc Anesth 12:157PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • J. O. C. AulerJr
    • 1
  • M. J. C. Carmona
    • 1
  1. 1.Dept. of Anaesthesiology, Institute of CardiologySão Paulo University School of MedicineSão PauloBrazil

Personalised recommendations