Advertisement

Problems Associated with Clinical Determination of Pulmonary Shunting

  • H. M. Lohbrunner
  • K. J. Falke
Conference paper

Abstract

A disturbance of pulmonary gas exchange results in hypoxaemia and hypercarbia. Given a stable cardiac output and a known FiO2, it is possible to explain changes in arterial PO2 and PCO2 by mismatch of alveolar ventilation to pulmonary perfusion or disturbance of the distribution of the alveolar ventilation to perfusion ratio (VA/Q). The normal healthy lung consists of more than 300 million alveoli which all receive the same inspiratory gas and mixed venous blood. Nevertheless the composition of intraalveolar and endcapillary partial pressures of O2, CO2 and N2 differ between various areas of the lung because the partial pressures in the alveoli (PA) depend upon the VA/Q.

Keywords

Adult Respiratory Distress Syndrome Alveolar Ventilation Pulmonary Shunting Mixed Venous Blood Intrapulmonary Shunt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dantzker DR, Brook CJ, Dehart P et al (1979) Ventilation-perfusion distributions in the adult respiratory distress syndrome. Am Rev Respir Dis 120:1039–1052PubMedGoogle Scholar
  2. 2.
    West JB, Wagner PD (1998) Pulmonary gas exchange. Am J Respir Crit Care Med 157: S82–S87PubMedGoogle Scholar
  3. 3.
    Riley RL, Cournand A (1949) “Ideal” alveolar air and the analysis of ventilation-perfusion relationships in the lung. J Appl Physiol 1:825PubMedGoogle Scholar
  4. 4.
    Berggren S (1942) The oxygen deficit of arterial blood caused by non-ventilating parts of the lung. Acta Physiol Scand [Suppl II]: 1Google Scholar
  5. 5.
    Martin L (1986) Abbreviating the alveolar gas equation: an argument for simplicity. Resp Care 31:40Google Scholar
  6. 6.
    Cane RD, Shapiro BA, Harrison RA et al (1980) Minimizing errors in intrapulmonary shunt calculations. Crit Care Med 8:294–297PubMedCrossRefGoogle Scholar
  7. 7.
    Carlon GC, Howland WS, Turnbull AD et al (1980) Pulmonary venous admixture during mechanical ventilation with varying FIO2 and PEEP. Crit Care Med 8:616–619PubMedCrossRefGoogle Scholar
  8. 8.
    Dantzker DR, Wagner PD, West JB (1974) Proceedings: Instability of poorly ventilated lung units during oxygen breathing. J Physiol Lond 242:72PPubMedGoogle Scholar
  9. 9.
    Quan SF, Kronberg GM, Schlobohm RM et al (1980) Changes in venous admixture with alterations of inspired oxygen concentration. Anesthesiology 52:477–482PubMedCrossRefGoogle Scholar
  10. 10.
    Shapiro AR, Virgilio RW, Peters RM (1977) Interpretation of alveolar-arterial oxygen tension difference. Surg Gynecol Obstet 144:547–552PubMedGoogle Scholar
  11. 11.
    Shapiro BA, Cane RD, Harrison RA et al (1980) Changes in intrapulmonary shunting with administration of 100 percent oxygen. Chest 77:138–141PubMedCrossRefGoogle Scholar
  12. 12.
    Suter PM, Fairley HB, Schlobohm RM (1975) Shunt, lung volume and perfusion during short periods of ventilation with oxygen. Anesthesiology 43:617–627PubMedCrossRefGoogle Scholar
  13. 13.
    Wagner PD, Laravuso RB, Uhl RR et al (1974) Distributions of ventilation-perfusion ratios in acute respiratory failure. Chest 65[Suppl]:32S–35SPubMedCrossRefGoogle Scholar
  14. 14.
    Lampron N, Lemaire F, Teisseire B et al (1985) Mechanical ventilation with 100% oxygen does not increase intrapulmonary shunt in patients with severe bacterial pneumonia. Am Rev Respir Dis 131:409–413PubMedGoogle Scholar
  15. 15.
    Pesenti A, Latini R, Riboni A et al (1982) Simple estimate of the true right to left shunt (Qs/Qt) at maintenance FIO2 by sulphur hexafluoride retention. Intensive Care Med 8: 283–286PubMedCrossRefGoogle Scholar
  16. 16.
    Fahri LE (1967) Elimination of inert gases by the lung. Respir Physiol 3:1CrossRefGoogle Scholar
  17. 17.
    Fahri LE, Yokoyama T (1967) Effects of ventilation perfusion inequality on elimination of inert gases. Respir Physiol 3:12CrossRefGoogle Scholar
  18. 18.
    Wagner PD, Saltzman HA, West JB (1974) Measurement of continuous distributions of ventilation-perfusion ratios: theory. J Appl Physiol 36:588–599PubMedGoogle Scholar
  19. 19.
    Evans JW, Wagner PD, West JB (1974) Conditions for reduction of pulmonary gas transfer by ventilation-perfusion inequality. J Appl Physiol 36:533–537PubMedGoogle Scholar
  20. 20.
    Wagner PD, Naumann PF, Laravuso RB (1974) Simultaneous measurement of eight foreign gases in blood by gas chromatography. J Appl Physiol 36:600–605PubMedGoogle Scholar
  21. 21.
    Radermacher P, Cinotti L, Falke KJ (1988) Grundlagen der methodischen Erfassung von Ventilations-Perfusions-Verteilungsstörungen. Anaesthesist 37:36–42PubMedGoogle Scholar
  22. 22.
    Enghoff H (1937) Volumen inefficax. Bemerkungen zur Frage des schädlichen Raumes. Up-sala Laekareforen Foerh 44:191Google Scholar
  23. 23.
    Bohr C (1891) Über die Lungenatmung. Scand Arch Physiol 2:236CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • H. M. Lohbrunner
    • 1
  • K. J. Falke
    • 1
  1. 1.Dept. of Anaesthesiology and Intensive CareHumboldt University HospitalBerlinGermany

Personalised recommendations