Muscular Wasting as a Consequence of Sepsis

  • N. Latronico
  • A. Candiani
Conference paper


Muscle involvement in severe disease is known since the dawn of medicine [1], however only in recent years has research focused on this topic. Basic and clinical scientists have made available a rich harvest of clinical, physiological, biochemical and pathological data, and with them the Babel tower problem: “Clinicians face the problem of muscle wasting and weakness; biochemists are confronted with muscle glutamine efflux, physiologists with reduced or absent excitability, pathologists with atrophy and necrosis”. Are they simply the same problem seen through different lenses? Do they perfectly overlap, so that clinically observed muscle wasting corresponds to histologically proven myopathy?


Rest Membrane Potential Critical Illness Polyneuropathy Critical Illness Myopathy Muscle Protein Breakdown Muscle Proteolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ippocrate (1994) Aforismi e giuramento. TEN Newton Compton, RomaGoogle Scholar
  2. 2.
    Shapiro L, Gelfand JA (1995) Cytokines. In: Shoemaker, Ayres, Grenvik, Holbrook (eds) Textbook of critical care, 3rd edn. WB Saunders, Philadelphia, pp 154–161Google Scholar
  3. 3.
    Zamir O, Hasseigren PO, Kunkel SL et al (1992) Evidence that tumor necrosis factor parteci-pates in the regulation of muscle proteolysis during sepsis. Arch Surg 127:170–174PubMedCrossRefGoogle Scholar
  4. 4.
    Matsui J, Cameron RG, Kurian R et al (1993) Nutritional, hepatic, and metabolic effects of cachectin/tumor necrosis factor in rats receiving total parenteral nutrition. Gastroenterology 104:235–243PubMedGoogle Scholar
  5. 5.
    Costelli P, Carbo N, Tessitore L et al (1993) Tumor necrosis factor mediates changes in tissue protein turnover in a rat cancer cachexia model. J Clin Invest 92:2783–2785PubMedCrossRefGoogle Scholar
  6. 6.
    Zamir O, O’Brian W, Thompson RC et al (1994) Reduced muscle protein breakdown in septic rats following treatment with interleukin-1 receptor antagonist. Int J Biochem 26:943–950PubMedCrossRefGoogle Scholar
  7. 7.
    Goodman MN (1994) Interleukin-6 induces skeletal muscle protein breakdown in rats. Proc Soc Exp Biol Med 205:182–185PubMedGoogle Scholar
  8. 8.
    Todorov P, Cariuk P, McDevitt T et al (1996) Characterization of a cancer cachectic factor. Nature 379:739–742PubMedCrossRefGoogle Scholar
  9. 9.
    Mitch WE, Goldberg AL (1996) Mechanisms of muscle wasting. New Engl J Med 335: 1897–1905PubMedCrossRefGoogle Scholar
  10. 10.
    Latronico N (1997) Acute myopathy of intensive care. Ann Neurol 42:131–132PubMedCrossRefGoogle Scholar
  11. 11.
    Tiao G, Fagn JM, Samuels N et al (1994) Sepsis stimulates nonlysosomal, energy-dependent proteolysis and increases ubiquitin mRNA levels in rat skeletal muscle. J Clin Invest 94: 2255–2264PubMedCrossRefGoogle Scholar
  12. 12.
    Voisin L, Breuille D, Combaret L et al (1996) Muscle wasting in a rat model of long-lasting sepsis results from the activation of lysosomal, Ca2+-activated, and ubiquitin-proteasome proteolytic pathways. J Clin Invest 97:1610PubMedCrossRefGoogle Scholar
  13. 13.
    Showalter CJ, Engel AG (1997) Acute quadriplegic myopathy: analysis of myosin isoforms and evidence for calpain-mediated proteolysis. Muscle Nerve 20:316–322PubMedCrossRefGoogle Scholar
  14. 14.
    Keays R (1998) Skeletal muscle in critical illness. In: Vincent JL (ed) Yearbook of intensive care and emergency medicine. Springer, Berlin Heidelberg New York, pp 599–608Google Scholar
  15. 15.
    Hobler SC, Tiao G, Fischer JE et al (1998) Sepsis-induced increase in muscle proteolysis is blocked by specific proteasome inhibitors. Am J Physiol 274:R30–R37PubMedGoogle Scholar
  16. 16.
    Grimble RF (1990) Nutrition and cytokine action. Nutr Res Rev 3:193–210PubMedCrossRefGoogle Scholar
  17. 17.
    Haussinger D, Roth E, Lang F et al (1993) Cellular hydration state: an important determinant of protein catabolism in health and disease. Lancet 341:1330–1332PubMedCrossRefGoogle Scholar
  18. 18.
    Vary TC, Kimball SR (1992) Sepsis-induced changes in protein synthesis: differential effects on fast-twitch and slow-twitch muscles. Am J Physiol 262:C1513–C1519PubMedGoogle Scholar
  19. 19.
    Sher JH, Shafiq SA, Shutta HS (1979) Acute myopathy with selective lysis of myosin filaments. Neurology 29:100–106PubMedCrossRefGoogle Scholar
  20. 20.
    Helliwell TR, Coacley JH, Wagenmakers AJM et al (1991) Necrotizing myopathy in critically ill patients. J Pathol 164:307–314PubMedCrossRefGoogle Scholar
  21. 21.
    Coacley JH, Nagendran K, Honavar M et al (1993) Preliminary observations on the neuromuscular abnormalities in patients with organ failure and sepsis. Intensive Care Med 19: 323–328CrossRefGoogle Scholar
  22. 22.
    Latronico N, Fenzi F, Recupero D et al (1996) Critical illness myopathy and neuropathy. Lancet 347:1579–1582PubMedCrossRefGoogle Scholar
  23. 23.
    Ramsay DA, Zochodne DW, Robertson DM et al (1993) A syndrome of acute severe muscle necrosis in intensive care unit patients. J Neuropathol Exp Neurol 52:387–398PubMedCrossRefGoogle Scholar
  24. 24.
    Leijten FSS (1997) Neuromuscular complications of prolonged critical care. In: Vincent JL (ed) Yearbook of intensive care and emergency medicine. Springer, Berlin Heidelberg New York, pp 774–786Google Scholar
  25. 25.
    Latronico N, Candiani A (1994) Neuromuscular abnormalities in patients with organ failure and sepsis. Intensive Care Med 20:612–613PubMedCrossRefGoogle Scholar
  26. 26.
    Finn PJ, Plank LD, Clark MA et al (1996) Progressive cellular dehydration and proteolysis in critically ill patients. Lancet 347:654–656PubMedCrossRefGoogle Scholar
  27. 27.
    Cunningham JN Jr, Carter NW, Rector FC et al (1971) Resting transmembrane potential in normal subjects and severely ill patients. J Clin Invest 50:49–59PubMedCrossRefGoogle Scholar
  28. 28.
    Gibson WH, Cook JJ, Gatipon G et al (1977) Effect of endotoxin shock on skeletal muscle cell membrane potential. Surgery 81:571–577PubMedGoogle Scholar
  29. 29.
    Trunkey DD, Illner H, Wagner IY et al (1979) The effect of septic shock on skeletal muscle action potentials in the primate. Surgery 85:638–643PubMedGoogle Scholar
  30. 30.
    Tracey KJ, Lowry SF, Beutler B et al (1986) Cachectin/tumor necrosis factor mediates changes of skeletal muscle plasma membrane potential. J Exp Med 164:1368–1373PubMedCrossRefGoogle Scholar
  31. 31.
    DeMeules JE, Pigula FA, Mueller M et al (1992) Tumor necrosis factor and cardiac function. J Trauma 32:686–692PubMedCrossRefGoogle Scholar
  32. 32.
    Eastridge BJ, Darlington DN, Evans JA et al (1994) A circulating shock protein depolarizes cells in hemorrhage and sepsis. Ann Surg 219:298–305PubMedCrossRefGoogle Scholar
  33. 33.
    Rich MM, Pinter MJ, Kraner SD et al (1998) Loss of electrical excitability in an animal model of acute quadriplegic myopathy. Ann Neurol 43:171–179PubMedCrossRefGoogle Scholar
  34. 34.
    Latronico N, Rasulo FA, Recupero D et al (1998) Acute quadriplegic with delayed onset and rapid recovery. J Neurosurg 88:769–772PubMedCrossRefGoogle Scholar
  35. 35.
    Rich MM, Bird SJ, Raps EC et al (1997) Direct muscle stimulation in acute quadriplegic myopathy. Muscle Nerve 20:665–673PubMedCrossRefGoogle Scholar
  36. 36.
    Zochodne DW, Bolton CF, Wells GA et al (1987) Critical illness polyneuropathy. A complication of sepsis and multiple organ failure. Brain 110:819–842PubMedCrossRefGoogle Scholar
  37. 37.
    Bolton CF (1996) Sepsis and the systemic inflammatory response syndrome: neuromuscular manifestations. Crit Care Med 24:1408–1416PubMedCrossRefGoogle Scholar
  38. 38.
    Antognini JF, Gronert GA (1996) Extra-junctional receptors and neuromuscular blocking drugs. Curr Opin Anaesth 9:344–347CrossRefGoogle Scholar
  39. 39.
    Piper RD, Pitt-Hyde M, Li F et al (1996) Microcirculatory changes in rat skeletal muscle in sepsis. Am J Respir Crit Care Med 154:931–937PubMedGoogle Scholar
  40. 40.
    Gilles RJ, D’Orio V, Ciancabilla F et al (1994) In vivo 31P nuclear magnetic resonance spectroscopy of skeletal muscle energetics in endotoxemic rats: a prospective, randomized study. Crit Care Med 22:499–505PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • N. Latronico
    • 1
  • A. Candiani
    • 1
  1. 1.Dept. of Anaesthesia and Intensive CareUniversity of BresciaBresciaItaly

Personalised recommendations