Advertisement

Pathophysiology of Brain Temperature

  • S. Rossi
  • E. Roncati Zanier
  • N. Stocchetti
Conference paper

Abstract

The brain is more sensitive than other organs to abnormal temperature. A rise of four or five degrees above normal deeply disturbs brain functions. Indeed it may be that the temperature of the brain is the single most important factor limiting the survival of man and other animals in hot environments. This can be desumed by the sophisticated control of the brain temperature present in mammalian.

Keywords

Cerebral Perfusion Pressure Severe Head Injury Brain Temperature Moderate Hypothermia Ischaemic Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fitch W (1994) Brain metabolism. In: Cottrell JE, Smith DS (eds) Anesthesia and neurosurgery. Mosby, pp 1–16Google Scholar
  2. 2.
    Baker MA (1972) Influence of the carotid rete on brain temperature in cats exposed to hot environment. J Physiol 220:711–728PubMedGoogle Scholar
  3. 3.
    Baker MA, Hayward NJ (1968) The influence of the nasal mucosa and the carotid rete upon hypotalamic temperature in sheep. J Physiol 198:561–579PubMedGoogle Scholar
  4. 4.
    Cablanc M, Caputa M (1979) Natural selective cooling of the human brain: evidence of its occurrence and magnitude. J Physiol 286:255–264Google Scholar
  5. 5.
    Busto R, Dietrich D (1989) The importance of brain temperature in cerebral ischemic injury. Stroke 20:1113–1114PubMedCrossRefGoogle Scholar
  6. 6.
    Busto R, Dietrich WD, Globus MY-T et al (1987) Small difference in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7:729–738PubMedCrossRefGoogle Scholar
  7. 7.
    Busto R, Globus MY-T, Dietrich WD et al (1989) Effect of mild hypothermia on ischemia induced release of neurotransmitters and free fatty acids in rat brain. Stroke 20:904–910PubMedCrossRefGoogle Scholar
  8. 8.
    Globus MY-T, Busto R, Dietrich WD et al (1988) Intra-ischemic extracellular release of dopamine and glutamate is associated with striatal vulnerability to ischemia. Neurosci Lett 91:36–40PubMedCrossRefGoogle Scholar
  9. 9.
    Busto R, Dietrich WD, Globus MY-T et al (1989) Post-ischemic moderate hypothermia inhibits CA1 hippocampal ischemic neuronal injury. Neurosci Lett 101:299–304PubMedCrossRefGoogle Scholar
  10. 10.
    Dietrich WD, Alonso O, Halley M et al (1996) Delayed posttraumatic brain hyperthermia worsens outcome after fluid percussion brain injury: A light and electron microscopic study in rats. Neurosurgery 38:533–541PubMedGoogle Scholar
  11. 11.
    Clasen RA, Pandolfi S, Laing I et al (1974) Experimental study of relation of fever to cerebral edema. J Neurosurgery 41:576–581CrossRefGoogle Scholar
  12. 12.
    Marion DW, Penrod LE, Kelsey SF et al (1996) Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med 336:540–546CrossRefGoogle Scholar
  13. 13.
    Metz C, Holzschuh M, Bein T et al (1996) Moderate hypothermia in patients with severe head injury: Cerebral and extracerebral effects. J Neurosurg 85:533–541PubMedCrossRefGoogle Scholar
  14. 14.
    Shiozaki T, Sugimoto H, Taneda M et al (1993) Effects of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J Neurosurg 79:363–368PubMedCrossRefGoogle Scholar
  15. 15.
    Reith J, Jorgensen HS, Pedersen PM et al (1996) Body temperature in acute stroke: relation to stroke severity, infarct size, mortality and outcome. Stroke 347:422–425Google Scholar
  16. 16.
    Jones PA, Andrews PJ, Midgley S et al (1994) Measuring the burden of secondary insults in head injured patients during intensive care. J Neurosurg Anesthesiol 6:4–14PubMedGoogle Scholar
  17. 17.
    Mellergard P, Nordstrom C-H, Christensson M (1990) A method for monitoring intracerebral temperature in neurosurgical patients. Neurosurgery 27:654–657PubMedCrossRefGoogle Scholar
  18. 18.
    Mellergard P, Nordstrom C-H (1991) Intracerebral temperature in neurosurgical patients. Neurosurgery 28:709–713PubMedCrossRefGoogle Scholar
  19. 19.
    Mellergard P, Nordstrom C-H (1990) Epidural temperature and possible intracerebral temperature gradients in man. Br J Neurosurg 4:31–38PubMedCrossRefGoogle Scholar
  20. 20.
    Zauner A, Doppenberg E, Menzel M et al (1997) Relationship of brain temperature to brain metabolism and core temperature in patients with severe head injury. Xth International Symposium on ICP and Neurochemical Monitoring in Brain Injury. Williamsburg USA. Acta PO 2 066Google Scholar
  21. 21.
    Rumana CS, Gopinath SP, Uzura M et al (1998) Brain temperature exceeds systemic temperature in head-injured patients. Crit Care Med 26:562–567PubMedCrossRefGoogle Scholar
  22. 22.
    Henker RA, Brown SD, Marion DW (1998) Comparison of brain temperature with bladder and rectal temperature in adults with severe head injury. Neurosurgery 42:1071–1075PubMedCrossRefGoogle Scholar
  23. 23.
    Rossi S, Valeriani VG, Spagnoli D et al (1998) Hyperthermia, antipyretic therapy and cerebral temperature in acute neurosurgical patients. Anesthesia 2000; 1:104Google Scholar
  24. 24.
    Mellergard P (1992) Changes in human intracerebral temperature in response to different methods of brain cooling. Neurosurgery 31:671–677PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • S. Rossi
    • 1
  • E. Roncati Zanier
    • 1
  • N. Stocchetti
    • 1
  1. 1.Dept. of Neurosurgical Intensive CareMaggiore Hospital — IRCCSMilanItaly

Personalised recommendations