Advertisement

Differential Diagnosis and Treatment of Acidosis

  • H. P. Povoas
  • M. H. Weil
Conference paper

Abstract

Acidosis may be associated with unrelated disease states and differing mechanisms. Metabolic production of organic acids, respiratory retention of carbon dioxide or renal loss of bicarbonate represent changes in which [H+] of fluids in both extracellular and intracellular compartments may be increased. Excesses of acids and deficits of bicarbonate are defined as metabolic acid base defects and increases or decreases in the CO2 tension of blood (and tissues) are defined as respiratory acidosis. An important exception is now recognized. During tissue ischaemia, excesses of tissue CO2 are generated [1]. The resulting hypercarbic tissue acidosis due to tissue hypoxia is therefore a metabolic defect rather than respiratory CO2 retention [2, 3, 4, 5].

Keywords

Lactic Acidosis Sodium Bicarbonate Diabetic Ketoacidosis Renal Tubular Acidosis Respiratory Acidosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Johnson BA, Weil MH 1991) Redefining ischemia due to circulatory failure as dual defects of oxygen deficits and of carbon dioxide excesses. Crit Care Med 19:1432–1438PubMedCrossRefGoogle Scholar
  2. 2.
    von Planta M, Weil MH, Gazmuri, RJ et al (1989) Myocardial acidosis associated with CO2 production during cardiac arrest and resuscitation. Circulation 80:684–692CrossRefGoogle Scholar
  3. 3.
    Desai VS, Weil MH, Tang W et al (1993) Gastric intramural PCO2 during peritonitis and shock. Chest 104:1254–1258PubMedCrossRefGoogle Scholar
  4. 4.
    Sato Y, Weil MH, Tang W et al (1997) Esophageal PCO2 as a monitor of perfusion failure during hemorrhagic shock. J Appl Physiol 82:558–562PubMedGoogle Scholar
  5. 5.
    Nakagawa Y, Weil MH, Tang W et al (1998) Sublingual capnometry for diagnosis and quantitation of circulatory shock. Am J Respir Crit Care Med 157:1838–1843PubMedGoogle Scholar
  6. 6.
    Astiz ME, Rackow EC, Kaufman B et al (1988) Relationship of oxygen delivery and mixed venous oxygenation to lactic acidosis in patients with sepsis and acute myocardial infarction. Crit Care Med 16:655–658PubMedCrossRefGoogle Scholar
  7. 7.
    Weil MH, Michaels S, Puri VK et al (1981) The stat laboratory: facilitating blood gas and biochemical measurements for the critically ill and injured. Am J Clin Pathol 76:34–42PubMedGoogle Scholar
  8. 8.
    Henderson LJ (1908) The theory of neutrality regulation in the animal organism. Am J Physiol 21:427–448Google Scholar
  9. 9.
    Ishihara K, Szerlip HM (1998) Anion gap acidosis. Semin Nephrol 18:83–97PubMedGoogle Scholar
  10. 10.
    Weil MH, von Planta M, Gazmuri RJ et al (1988) Incomplete global myocardial ischemia during cardiac arrest and resuscitation. Crit Care Med 16(10):997–1001PubMedCrossRefGoogle Scholar
  11. 11.
    Weil MH, Afifi AA (1970) Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (shock). Circulation 41:989–1001PubMedCrossRefGoogle Scholar
  12. 12.
    Gore DC, Jahoor F, Hibbert JM et al (1996) Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability. Ann Surg 224:97–102PubMedCrossRefGoogle Scholar
  13. 13.
    Porras MC, Lecumberri JN, Castrillon JL (1998) Trimethoprim/sulfamethoxazole and metabolic acidosis in HIV-infected patients. Ann Pharmacother 32:185–189PubMedCrossRefGoogle Scholar
  14. 14.
    Hanna JP, Ramundo ML (1998) Rhabdomyolysis and hypoxia associated with prolonged propofol infusion in children. Neurology 50:301–303PubMedCrossRefGoogle Scholar
  15. 15.
    Latif MA, Weil MH (1979) Circulatory defects during phenformin lactic acidosis. Intensive Care Med 5:135–139PubMedCrossRefGoogle Scholar
  16. 16.
    Bell PM, Hadden DR (1997) Metformin. Endocrinol Metab Clin North Am 26:523–537PubMedCrossRefGoogle Scholar
  17. 17.
    Lalau JD, Lacroix C, Compagnon P et al (1995) Role of metformin accumulation in metformin-associated lactic acidosis. Diabetes Care 18:779–784PubMedCrossRefGoogle Scholar
  18. 18.
    Sundar K, Suarez M, Banogon PE et al (1997) Zidovudine-induced fatal lactic acidosis and hepatic failure in patients with acquired immunodeficiency syndrome: report of two patients and review of the literature. Crit Care Med 25:1425–1430PubMedCrossRefGoogle Scholar
  19. 19.
    Uribarri J, Oh MS, Carroll HJ (1998) D-lactic acidosis. A review of clinical presentation, biochemical features, and pathophysiologic mechanisms. Medicine (Baltimore) 77:73–82CrossRefGoogle Scholar
  20. 20.
    Kadakia SC (1995) D-lactic acidosis in a patient with jejunoileal bypass. J Clin Gastroenterol 20:154–156PubMedCrossRefGoogle Scholar
  21. 21.
    Bongaerts GP, Tolboom JJ, Naber AH et al (1997) Role of bacteria in the pathogenesis of short bowel syndrome-associated D-lactic acidemia. Microb Pathog 22:285–293PubMedCrossRefGoogle Scholar
  22. 22.
    Marbach EP, Weil MH (1967) Rapid enzymatic measurement of blood lactate and pyruvate. Use and significance of metaphosphoric acid as a common precipitant. Clin Chem 13: 314–325PubMedGoogle Scholar
  23. 23.
    Brandenburg MA, Dire DJ (1998) Comparison of arterial and venous blood gas values in the initial emergency department evaluation of patients with diabetic ketoacidosis. Ann Emerg Med 31:459–465PubMedCrossRefGoogle Scholar
  24. 24.
    Okuda Y, Adrogué HJ, Field JB et al (1996) Counterproductive effects of sodium bicarbonate in diabetic ketoacidosis. J Clin Endocrinol Metab 81:314–320PubMedCrossRefGoogle Scholar
  25. 25.
    Green SM, Rothrock SG, Ho JD et al (1998) Failure of adjunctive bicarbonate to improve outcome in severe pediatric diabetic ketoacidosis. Ann Emerg Med 31:41–48PubMedCrossRefGoogle Scholar
  26. 26.
    McMartin KE, Ambre JJ, Tephly TR (1980) Methanol poisoning in human subjects. Role for formic acid accumulation in the metabolic acidosis. Am J Med 68:414–418PubMedCrossRefGoogle Scholar
  27. 27.
    Gabow PA, Clay K, Sullivan JB et al (1986) Organic acids in ethylene glycol intoxication. Ann Intern Med 105:16–20PubMedGoogle Scholar
  28. 28.
    Kirschbaum B (1998) The acidosis of exogenous phosphate intoxication. Arch Intern Med 158:405–408PubMedCrossRefGoogle Scholar
  29. 29.
    Moon PF, Kramer GC (1995) Hypertonic saline-dextran resuscitation from hemorrhagic shock induces transient mixed acidosis. Crit Care Med 23(2):323–331PubMedCrossRefGoogle Scholar
  30. 30.
    Batlle D, Flores G (1996) Underlying defects in distal renal tubular acidosis: new understandings. Am J Kidney Dis 27:896–915PubMedCrossRefGoogle Scholar
  31. 31.
    DuBose TD Jr (1997) Hyperkalemic hyperchloremic metabolic acidosis: pathophysiologic insights. Kidney Int 51:591–602PubMedCrossRefGoogle Scholar
  32. 32.
    Nahas GG, Sutin KM, Fermon C et al (1998) Guidelines for the treatment of acidaemia with THAM. Drugs 55:191–224PubMedCrossRefGoogle Scholar
  33. 33.
    Goldsmith DJ, Forni LG, Hilton PJ (1997) Bicarbonate therapy and intracellular acidosis. Clin Sci(Colch) 93:593–598Google Scholar
  34. 34.
    Filley GF, Kindig NB (1984) Carbicarb, an alkalinizing ion-generating agent of possible clinical usefulness. Trans Am Clin Climatol Assoc 96:141–153Google Scholar
  35. 35.
    Sun JH, Filley GF, Hord K et al (1987) Carbicarb: an effective substitute for NaHCO3 for the treatment of acidosis. Surgery 102:835–839PubMedGoogle Scholar
  36. 36.
    Kette F, Weil MH, von Planta M et al (1990) Buffer agents do not reverse intramyocardial acidosis during cardiac resuscitation. Circulation 81:1660–1666PubMedCrossRefGoogle Scholar
  37. 37.
    Gazmuri RJ, von Planta M, Weil MH et al (1990) Cardiac effects of carbon dioxide-consuming and carbon dioxide-generating buffers during cardiopulmonary resuscitation. J Am Coll Cardiol 15(2):482–490PubMedCrossRefGoogle Scholar
  38. 38.
    Sun S, Weil MH, Tang W et al (1996) Effects of buffer agents on postresuscitation myocardial dysfunction. Crit Care Med 24:2035–2041PubMedCrossRefGoogle Scholar
  39. 39.
    Rhee KH, Toro LO, McDonald GG et al (1993) Carbicarb, sodium bicarbonate, and sodium chloride in hypoxic lactic acidosis. Effect on arterial blood gases, lactate concentrations, hemodynamic variables, and myocardial intracellular pH. Chest 104:913–918PubMedCrossRefGoogle Scholar
  40. 40.
    Beech JS, Williams SC, Iles RA et al (1995) Haemodynamic and metabolic effects in diabetic ketoacidosis in rats of treatment with sodium bicarbonate or a mixture of sodium bicarbonate and sodium carbonate. Diabetologia 38:889–898PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • H. P. Povoas
    • 1
  • M. H. Weil
    • 1
    • 2
  1. 1.Institute of Critical Care MedicinePalm SpringsUSA
  2. 2.The University of Southern California School of MedicineLos AngelesUSA

Personalised recommendations