Metabolic Acidosis and Metabolic Alkalosis in the Critically Ill

  • F. Schiraldi
  • P. Ferraro
  • F. Paladino


In most cases, the metabolic disorders of acid-base homeostasis are helpful to highlight the main or associated diagnosis in the critically ill. As the physiopathology and the diagnostic aspects are fully covered elsewhere in these proceedings, it seems reasonable to focus here only on the monitoring value of the metabolic derangements of blood gas analysis (BGA) and on some controversial aspects of therapeutics.


Metabolic Acidosis Lactic Acidosis Renal Tubular Acidosis Metabolic Alkalosis Respiratory Acidosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Narins RG, Emmett M (1980) Simple and mixed acid-base disorders: A practical approach. Medicine S9:161–187Google Scholar
  2. 2.
    Narins RG, Jones ER et al (1982) Diagnostic strategies in disorders of fluid, electrolyte and acid-base homeostasis. Am J Med 72:469–512CrossRefGoogle Scholar
  3. 3.
    Schiraldi F (1995) Time to abandon base excess as a reliable index in the ICU? Int J Int Care 2:23Google Scholar
  4. 4.
    Zhang H, Vincent JL (1993) Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis 148:867–871PubMedCrossRefGoogle Scholar
  5. 5.
    Bircher NG (1992) Acidosis of cardiopulmonary resuscitation: Carbon dioxide transport and anaerobios. Crit Care Med 20;9:1203–1204PubMedCrossRefGoogle Scholar
  6. 6.
    Van der Linden P, Rausin I et al (1995) Detection of tissue hypoxia by arterio-venous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth Analg 80: 269–275PubMedGoogle Scholar
  7. 7.
    Kette F, Weil MH et al (1993) Intramyocardial hypercarbic acidosis during cardiac arrest and resuscitation. Crit Care Med 21:901–906PubMedCrossRefGoogle Scholar
  8. 8.
    Adrogué HJ, Rashad MN, Gorin AB et al (1989) Assessing acid-base status in circulatory failure. Differences between arterial and central venous blood. N Engl J Med 320:1312–1318PubMedCrossRefGoogle Scholar
  9. 9.
    Schlitig R, Pinsky MR (1991) Defining the hypoxic threshold. Crit Care Med 19:147–149CrossRefGoogle Scholar
  10. 10.
    Vincent JL, Dufaye P et al (1983) Serial lactate determinations during circulatory shock. Crit Care Med 11:449–451PubMedCrossRefGoogle Scholar
  11. 11.
    Mahutte CK, Jaffe MB et al (1991) Cardiac output from carbon dioxide production and arterial and venous oximetry. Crit Care Med 19:1270–1277PubMedCrossRefGoogle Scholar
  12. 12.
    American Heart Association (1994) Textbook of Advanced Cardiac Life SupportGoogle Scholar
  13. 13.
    Stacpoole PW, Harman EM et al (1983) Treatment of lactic acidosis with dichloroacetate. N Engl J Med 309:390–396PubMedCrossRefGoogle Scholar
  14. 14.
    Stacpoole PW, Wright EC et al (1992) A controlled clinical trial of DCA for treatment of lactic acidosis in adults. N Engl J Med 327:1564–1569PubMedCrossRefGoogle Scholar
  15. 15.
    Arieff AI (1993) Managing metabolic acidosis: Update on the sodium bicarbonate controversy. J Crit Illness 8:224–229Google Scholar
  16. 16.
    Rhee K, Toro LO et al (1993) Carbicarb, sodium carbonate, sodium chloride in hypoxic lactic acidosis. Chest 104:913–918PubMedCrossRefGoogle Scholar
  17. 17.
    Adrogué HJ, Madias NE (1998) Management of life-threatening acid-base disorders. II parts. N Engl J Med 338;1:26–34, 338;2:107–111PubMedCrossRefGoogle Scholar
  18. 18.
    Gabow P (1985) Disorders associated with an altered anion gap. Kidney Int 27:472–483PubMedCrossRefGoogle Scholar
  19. 19.
    Smithline N, Gardner KD (1976) Gaps — anionic and osmolal. JAMA 236:1594–1597PubMedCrossRefGoogle Scholar
  20. 20.
    Faber MD, Kupin WL et al (1994) Common fluid-electrolyte and acid-base problems in the intensive care unit: Selected issues. Semin Nephrol 14(1):8–22PubMedGoogle Scholar
  21. 21.
    Adroguè HJ, Madias NE (1981) Changes in plasma potassium concentration during acute acid-base disturbances. Am J Med 71:456–467PubMedCrossRefGoogle Scholar
  22. 22.
    Steiner RW (1984) Interpreting the fractional excretion of sodium. Am J Med 77:699–702PubMedCrossRefGoogle Scholar
  23. 23.
    Laterre PF, Mallie JP (1993) The fractional excretion of chloride instead of sodium indicates hypovolemia: A comparative study of bedside assessment of true or effective intravascular depletion. Clin Intens Care 4:112–115Google Scholar
  24. 24.
    Idris AH, Staples ED et al (1994) Effect of ventilation on acid-base balance and oxygenation in low blood-flow states. Crit Care Med 22:1827–1834PubMedGoogle Scholar
  25. 25.
    Rimmer JM, Gennari FJ (1987) Metabolic alkalosis. J Intensive Care Med 2:137–150CrossRefGoogle Scholar
  26. 26.
    Gennari FJ (1998) Current concepts: Hypokalemia. N Engl J Med 339;7:451–458PubMedCrossRefGoogle Scholar
  27. 27.
    Kamel KS, Ethier JH et al (1990) Urine electrolytes and osmolality: When and how to use them. Am J Nephrol 10:89–102PubMedCrossRefGoogle Scholar
  28. 28.
    Seldin DW, Rector FC (1972) The generation and maintenance of metabolic alkalosis. Kidney Int 1:306–320PubMedCrossRefGoogle Scholar
  29. 29.
    Madias NE, Cohen JJ, Adrogué HJ (1990) Influence of acute and chronic respiratory alkalosis on preexisting chronic metabolic alkalosis. Am J Physiol 258:F479–F485PubMedGoogle Scholar
  30. 30.
    Tomsic M, Horvart M (1991) Torsade de pointes associated with combined severe metabolic and respiratory alkalosis. Clin Int Care 2;1:47–50Google Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • F. Schiraldi
    • 1
  • P. Ferraro
    • 1
  • F. Paladino
    • 1
  1. 1.Dept. of Emergency MedicineSan Paolo HospitalNaplesItaly

Personalised recommendations