Muscle Relaxants in Clinical Anaesthesia: An Update

  • V. Vilardi
  • M. Sanfilippo
  • M. K. Verdi
Conference paper


Most of the drugs actually used in general anaesthesia resemble high stere-ospecifity, receptors affinity, short duration of action, short recovery time, rapid distribution and redistribution in high degradation tissues. A short sleeping time and muscle relaxation is needed to ensure a rapid recovery and early deambulation. Since 60% of the total surgical procedures are nowadays performed in outpatient regimen, it is necessary to satisfy such requirements. The question is, whether this need has really improved the quality of the drugs currently available. In the case of non-depolarizing muscle relaxants (NMBAs), the short onset time, action and recovery are combined with low potency [1]. None of the muscle relaxants can substitute succinylcholine in terms of onset, duration, quality of muscle relaxation and recovery despite its well known side effects [2]. The other muscle relaxants have a different behaviour. The rate of maximal block reached at laryngeal muscles by rocuronium and mivacurium is 77% and 90% respectively [3], which is lower than thumb adductor muscle. In the case of mivacurium, the time of permanence on neuromuscular laryngeal endplates [4] is so short that it is impossible to perform any procedure on vocal chords even if a complete block is registered on the adductor pollicis muscle. Another problem concerns the method of measurement of the onset time. It is defined as the time interval from the beginning of the injection to the maximal action (peak effect) of a drug [5]. The measurement of the onset time should be performed without either any additive or synergistic drugs (propofol, etomidate, halotane, isoflu-rane, enflurane, etc.) [6, 7], or priming and timing principle [8] which often cause patient discomfort [9].


Onset Time Neuromuscular Blocking Agent Rocuronium Bromide Adductor Pollicis Muscle Recovery Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Donati F (1993) Effect of dose and potency on onset. Anaesth Pharmacol Rev 1:34–43Google Scholar
  2. 2.
    Meistelman C, Mc Loughlin C (1993) Suxamethonium. Curr Anaesth Crit Care 4:53–58CrossRefGoogle Scholar
  3. 3.
    Belmont MR, Rubin LA, Lien CA et al (1995) Mivacurium. Anaesth Pharmacol Rev 3: 156–167Google Scholar
  4. 4.
    Plaud B, Debaene B, Lequeau F et al (1996) Mivacurium neuromuscular block at the adductor muscles of the larynx and adductor pollicis in humans. Anesthesiology 85:77–81PubMedCrossRefGoogle Scholar
  5. 5.
    Viby-Mogensen, Engbaeck J, Eriksson LI et al (1996) Good clinical research practice (GCRP) in pharmacodynamic studies of neuromuscular blocking agents. Acta Anaesth Scand 40:59–74PubMedCrossRefGoogle Scholar
  6. 6.
    Meretoja OA, Wirtavuori K, Taivainen T et al (1996) Time course of potentiation of mivacurium by halothane and isoflurane in children. Br J Anaesth 76:235–238PubMedCrossRefGoogle Scholar
  7. 7.
    Kansanaho M, Olkkola K (1996) Quantifying the effect of isoflurane on mivacurium infusion requirements. Anaesthesia 51:133–136PubMedCrossRefGoogle Scholar
  8. 8.
    Sieber TJ, Zbinden AM, Curatolo M et al (1998) Tracheal intubation with rocuronium using the “timing principle”. Anesth Analg 86:1137–1140PubMedGoogle Scholar
  9. 9.
    Aziz L, Jahangir SM, Choudhury SNS et al (1997) The effect of priming with vecuronium and rocuronium on young and elderly patients. Anesth Analg 85:663–666PubMedGoogle Scholar
  10. 10.
    Puehringer FK, Khuenl-Brady KS, Koller J (1992) Evaluation of the endotracheal intubating conditions of Rocuronium (ORG 9426) and succinylcholine in outpatient surgery. Anesth Analg 75:37–40Google Scholar
  11. 11.
    Werner MU, Nielsen HK, May O et al (1988) Assessment of neuromuscular transmission by the evoked acceleration response. An evaluation of the accuracy of the acceleration transducer in comparison with a force displacement transducer. Acta Anaesth Scand 32:395–400PubMedCrossRefGoogle Scholar
  12. 12.
    Brull S J (1997) Indicators of recovery of neuromuscular function: time for change? Anesthesiology 86:755–757PubMedCrossRefGoogle Scholar
  13. 13.
    Berg H, Viby-Mogensen J, Roed J et al (1997) Residual neuromuscular block is a risk factor for postoperative pulmonary complications. Acta Anaesthesiol Scand 41:1095–1103PubMedCrossRefGoogle Scholar
  14. 14.
    Kopman AF, Ng J, Zank LM et al (1996) Residual postoperative paralysis. Anesthesiology 85: 1253–1259PubMedCrossRefGoogle Scholar
  15. 15.
    Kopmann AF, Yee PS, Neuman GG et al (1997) Relationship of the Train-of-four fade ratio to clinical signs and symptoms of residual paralysis in awake volunteers. Anesthesiology 86: 765–771CrossRefGoogle Scholar
  16. 16.
    D’ Honneur G, Lofaso F, Drumond GB et al (1998) Susceptibility to upper airway obstruction during partial neuromuscular block. Anesthesiology 88:371–378PubMedCrossRefGoogle Scholar
  17. 17.
    Jan GSK, Tong WN, Chan AMH et al (1996) Recovery from mivacurium block with or without anticholinesterase following continuous infusion in obstetric patients. Anaesth Intens Care 24:585–589Google Scholar
  18. 18.
    Abdulatif M, Al-Ghamdi A, Al-Sanabary M et al (1996) Edrophonium antagonism of intense mivacurium-induced neuromuscular block in children. Br J Anaesth 76:239–244PubMedCrossRefGoogle Scholar
  19. 19.
    Hunter JM (1996) Is it always necessary to antagonize residual neuromuscular block? Do children differ from adults? Br J Anaesth 77:707–709PubMedCrossRefGoogle Scholar
  20. 20.
    Abdulatif M, Mowafi H, Al-Ghamdi A et al (1996) Dose-response relationships for neostigmine antagonism of rocuronium-induced neuromuscular block in children and adults. Br J Anaesth 77:710–715PubMedCrossRefGoogle Scholar
  21. 21.
    Okum GS, Keikhah MM, Horrow JC et al (1997) Is reversal of mivacurium detrimental? Anesthesiology 87:A845CrossRefGoogle Scholar
  22. 22.
    Erkola O, Rautoma P, Meretoja O (1996) Mivacurium when preceded by pancuronium becomes a long acting muscle relaxant. Anesthesiology 84:562–565PubMedCrossRefGoogle Scholar
  23. 23.
    Olkkola KT, Tammisto T (1994) Quantifying the interaction of rocuronium (ORG 9426) with etomidate, fentanyl, midazolam, propofol, thiopental and isoflurane, using closed-loop feedback control of rocuronium infusion. Anesth Analg 78:691–696PubMedCrossRefGoogle Scholar
  24. 24.
    Shorten GD, Crawford MW, St Louis P (1996) The neuromuscular effects of mivacurium chloride during propofol anesthesia in children. Anesth Analg 82:1170–1175PubMedGoogle Scholar
  25. 25.
    Pino MR, Ali HH, Denman WT et al (1998) A comparison of the intubation conditions between mivacurium and rocuronium during balanced anesthesia. Anesthesiology 88:673–678PubMedCrossRefGoogle Scholar
  26. 26.
    Hunter JM (1993) Histamine release and neuromuscular blocking drugs. Anaesthesia 48: 561–563PubMedCrossRefGoogle Scholar
  27. 27.
    Rimaniol JR (1997) Intubating conditions using cis-atracurium after induction of anaesthesia with tiopenthone. Anaesthesia 52:998–1000PubMedCrossRefGoogle Scholar
  28. 28.
    Booth MG, Marsh B, Bryden FMM et al (1992) A comparison of the pharmacodynamics of rocuronium and vecuronium during halothane anaesthesia. Anaesthesia 47:832–834PubMedCrossRefGoogle Scholar
  29. 29.
    Wierda JMKH, Schuringa M, Van den Broek L (1997) Cardiovascular effects of an intubating dose of rocuronium 0,6 mg/kg−1 in anaesthetized patients, paralysed with vecuronium. Br J Anaesth 78:586–587PubMedCrossRefGoogle Scholar
  30. 30.
    Durant NN, Marshall IG, Savage DS et al (1979) The neuromuscular and autonomic blocking activities of pancuronium, ORG NC45 and other pancuronium analogues, in the cat. J Pharm Pharmac 31:831–836CrossRefGoogle Scholar
  31. 31.
    Agoston S (1995) Onset time and evaluation of intubating conditions-rocuronium in perspective: A review. Eur J Anaesth 12(11):31–37Google Scholar
  32. 32.
    Xue FS, Tong SY, Liao X et al (1997) Dose-Response and Time course of effect of Rocuronium in male and female anesthetized patients. Anesth Analg 85:667–671PubMedGoogle Scholar
  33. 33.
    Fuchs Buder T, Tassonyi E (1996) Intubating conditions and time course of rocuronium induced neuromuscular block in children. Br J Anaesth 77:335–338PubMedCrossRefGoogle Scholar
  34. 34.
    Hudson ME, Rothfield KP, Tullock WC et al (1998) Haemodynamic effects of rocuronium bromide in adult cardiac surgical patients. Can J Anaesth 45:139–143PubMedCrossRefGoogle Scholar
  35. 35.
    Xue FS, Liao X, Tong S Y et al (1998) Influence of acute normovolaemic haemodilution on the relation between the dose and response of rocuronium bromide. Eur J Anaesthesiol 15:21–26PubMedGoogle Scholar
  36. 36.
    Cooper RA, Wierda JMKH, Mirakhur R et al (1994) Pharmacodynamics and pharmacokinetics of rocuronium bromide in patients with and without renal failure. Eur J Anaesth 11[Suppl] 9:82–86Google Scholar
  37. 37.
    Cooper RA, Maddineni VR, Mirakhur MK et al (1993) Time course of neuromuscular effects and pharmacokinetics of rocuronium bromide (ORG 9426) during isoflurane anaesthesia in patients with or without renal failure. Br J Anaesth 71:222–229PubMedCrossRefGoogle Scholar
  38. 38.
    Bevan DR (1994) Rocuronium bromide and organ function. Eur J Anaesth 11[Suppl] 9:87–91Google Scholar
  39. 39.
    Khalil M, D’Honneur G, Duvaldenstin P (1994) Pharmacokinetics and pharmacodynamics of rocuronium in patients with cirrhosis. Eur J Anaesthesiol 11[Suppl] 9:85–86Google Scholar
  40. 40.
    Magorian T, Wood P, Caldwell J et al (1995) Pharmacokinetics and neuromuscular effects of rocuronium bromide in patients with liver disease. Anesth Analg 80:754PubMedGoogle Scholar
  41. 41.
    Servin F, Lavaut E, Desmonts JM (1993) Pharmacokinetics of repeated doses of rocuronium in cirrhotic and control patients. Anesthesiology 79:A962Google Scholar
  42. 42.
    Marcel RJ, Ramsay MAE, Tillmann Hein HA et al (1997) Duration of rocuronium-induced neuromuscular block during liver transplantation: A predictor of primary allograft function. Anesth Analg 84:870–874PubMedGoogle Scholar
  43. 43.
    Proost JH (1997) A pharmacokinetic/pharmacodynamic model explaining the altered potency and time course of action of neuromuscular blocking agents in myasthenic patients. Eur J Anesthesiol 14[Suppl] 16:32Google Scholar
  44. 44.
    Sanfilippo M, Fierro G, Cavalletti MV et al (1997) Rocuronium in two myasthenic patients undergoing thymectomy. Acta Anaesthesiol Scand 41:1365–1366PubMedCrossRefGoogle Scholar
  45. 45.
    Puehringer FK, Khuenl-Brody KS, Mitterschiffthaler G (1995) Rocuronium bromide: Time course of action in underweight, normal weight, overweight and obese patients. Eur J Anaesth 12(11):107–110Google Scholar
  46. 46.
    Reynolds LM, Lau M, Brown R et al (1997) Bioavailability of intramuscular rocuronium in infants and children. Anesthesiology 87:1096–1105PubMedCrossRefGoogle Scholar
  47. 47.
    Kelly MC, Mirakhur RK, Carabine UA et al (1996) Rocuronium: Placental transfer and neonatal effects. Anesthesiology 85:A883CrossRefGoogle Scholar
  48. 48.
    Motamed C, Choquette R, Donati F (1997) Rocuronium prevents succinylcholine fasciculations. Can J Anaesth 44:1262–1268PubMedCrossRefGoogle Scholar
  49. 49.
    Demers-Pelletier J, Drolet P, Girard M et al (1997) Comparison of rocuronium and d-tubocurarine for prevention of succinylcholine-induced fasciculations and myalgia. Can J Anaesth 44:1144–1147PubMedCrossRefGoogle Scholar
  50. 50.
    McEwin L, Merrick PM, Bevan DR (1997) Residual neuromuscular blockade after cardiac surgery: Pancuronium vs rocuronium. Can J Anaesth 44:891–895PubMedCrossRefGoogle Scholar
  51. 51.
    Coveler LA, Gallacher BP (1997) Postoperative rocuronium reparalysis. Can J Anaesth 44:1127PubMedGoogle Scholar
  52. 52.
    Arndt GA, Gerry T, White P (1997) Postoperative reparalysis after rocuronium following nebulized epinephrine. Can J Anaesth 44:321–324PubMedCrossRefGoogle Scholar
  53. 53.
    Munoz HR, Gonzalez JA, Dagnino JA et al (1997) The effect of ephedrine on the onset time of rocuronium. Anesth Analg 85:437–440PubMedGoogle Scholar
  54. 54.
    Driessen JJ, Robertson EN, Booij LHD et al (1998) Accelerated recovery and disposition from rocuronium in an end-stage renal failure patient on chronic anticonvulsant therapy with sodium valproate and primidone. Br J Anaesth 80:386–388PubMedCrossRefGoogle Scholar
  55. 55.
    Loan PB, Connolly FM, Mirakhur RK et al (1997) Neuromuscular effects of rocuronium in patients receiving beta-adrenoreceptor blocking, calcium entry blocking and anticonvulsant drugs. Br J Anaesth 78:90–91PubMedCrossRefGoogle Scholar
  56. 56.
    Kim DW, Joshi G, White P et al (1996) Interactions between mivacurium, rocuronium and vecuronium during general anaesthesia. Anesth Analg 83:818–822PubMedGoogle Scholar
  57. 57.
    Stevens J, Shepherd J, Vories P et al (1996) A mixture of mivacurium and rocuronium is comparable in clinical onset to succinylcholine. J Clinical Anaesth 8:486–489CrossRefGoogle Scholar
  58. 58.
    Wierda JMKH, Van den Broeck L, Smeulers NJ et al (1992) Early reversibility of Org 9487, a new steroidal muscle relaxant. Anesthesiology 77:A970CrossRefGoogle Scholar
  59. 59.
    Yamaguchi K, Huraux C, Szlam F et al (1998) Vascular effects of ORG 9487 in human mammary arteries, a new short acting muscle relaxant. Anesth Analg 86:SCA109Google Scholar
  60. 60.
    Prior C, Tian L, El Maliah AI et al (1995) Neuromuscular blocking profile of the vecuronium analogue, Org 9487, in the rat isolated hemidiaphragm preparation. Br J Pharmacol 116: 3049–3055PubMedCrossRefGoogle Scholar
  61. 61.
    Wierda JMKH, Beaufort AM, Kleef UW et al (1994) Preliminary investigations of the clinical pharmacology of three short acting non depolarizing neuromuscular blocking agents: Org 9453, Org 9489, Org 9487. Can J Anaesth 41:213–220PubMedCrossRefGoogle Scholar
  62. 62.
    Lictor JL, Korttila K, Lane B et al (1996) Onset time, peak effect and cardiovascular effects in adult patients after three different doses of ORG 9487. Anesthesiology 85:A805Google Scholar
  63. 63.
    Bikhazi GB, Deepika KD, Fonseca J et al (1996) Cardiovascular effects of ORG 9487 under nitrous oxide, barbiturate, fentanyl anaesthesia. Anesth Analg 82:S29Google Scholar
  64. 64.
    Van den Broeck L, Wierda JMKH, Smeulers NJ et al (1994) Pharmacodynamics and pharmacokinetics of an infusion of ORG 9487, a new short acting steroidal neuromuscular blocking agent. Br J Anaesth 73:331–335CrossRefGoogle Scholar
  65. 65.
    Schiere S, Van den Broeck L, Proost JH (1997) Comparison of Vecuronium with ORG 9487 and their interaction. Can J Anaesth 44:1138–1143PubMedCrossRefGoogle Scholar
  66. 66.
    Wierda JMKH, Proost JH, Muir AW et al (1993) Design of drug for rapid onset. Anaesth Pharmacol Rev 77:579–584Google Scholar
  67. 67.
    Witkowski TA, Bartkowsky RR, Huffnage S et al (1997) Haemodynamic effects of bolus injection of ORG 9487: A comparison with mivacurium and succinylcholine. Anesthesiology 87:A865CrossRefGoogle Scholar
  68. 68.
    Abboud TK, Bikhazi G, Mroz L et al (1997) ORG 9487 vs succinylcholine in rapid sequence induction for cesarean section patients: maternal and neonatal effects. Anesthesiology 87:A906CrossRefGoogle Scholar
  69. 69.
    Fragen RJ, Shanks CA (1997) Time course of onset and recovery of ORG 9487: A comparison with mivacurium and succinylcholine. Anesthesiology 87:A867CrossRefGoogle Scholar
  70. 70.
    Duvaldestin P, Slavov V, Rimaniol JR (1997) Pharmacodynamique de l’ORG 9487 chez les patients ay ant une cirrhose. 39° Congrès de la SFAR. Ann Fr Anesth Reanim R380Google Scholar
  71. 71.
    Whitford AM, Godschalkx A, Robertson EN (1997) A clinical comparison of some cardiovascular and intraocular effects of ORG 9487, vecuronium and succinylcholine. Anesthesiology 87:A848CrossRefGoogle Scholar
  72. 72.
    Meretoja OA, Taivainen T, Jalkanen L et al (1996) A fast-onset short-acting non-depolarizing neuromuscular blocker, ORG 9487 in infants and children. Br J Anaesth 76[Suppl] 2: A304Google Scholar
  73. 73.
    Kaplan RF, Fletcher JE, Hannallah R et al (1996) The ED50 of ORG 9487 in infants and in children. Anesthesiology 85:A1059Google Scholar
  74. 74.
    Motsch J, Meakin G, Meretoja OA et al (1996) A dose ranging study of ORG 9487 on endotracheal intubating conditions in infants and children. Anesthesiology 85: A1084Google Scholar
  75. 75.
    Debaene B, Billard V, Lieutaud T et al (1995) Org 9487 induced neuromuscular block at the adductor pollicis muscle and laryngeal adductor muscles in humans. Anesthesiology 83:A919Google Scholar
  76. 76.
    Schiere S (1997) Pharmacokinetics and pharmacodynamic relationship of the Org 9488, the 3-desacetyl metabolite of ORG 9487. Anesthesiology 87:A377CrossRefGoogle Scholar
  77. 77.
    Basta SJ (1992) Clinical pharmacology of mivacurium chloride. A review. J Clin Anaesth 4:153–163CrossRefGoogle Scholar
  78. 78.
    Brandom BW, Simhi E, Lloyd ME et al (1997) Intubation in children after 0,3 mg/kg of mivacurium. J Clin Anesth 9:576–581PubMedCrossRefGoogle Scholar
  79. 79.
    Østergaard D, Jensen FS, Skovgaard T (1995) Dose-response relationship for mivacurium in patients with phenotypically abnormal plasma Cholinesterase activity. Acta Anaesth Scand 39:1016–1018PubMedCrossRefGoogle Scholar
  80. 80.
    Kim KS, Kim KH, Shin WJ et al (1998) Neuromuscular interaction between mivacurium and esmolol in rabbits. Anaesthesia 53:140–145PubMedCrossRefGoogle Scholar
  81. 81.
    Paterson IG, Hood JR, Russell SH et al (1994) Mivacurium in the myasthenic patient. Br J Anaesth 73:494–498PubMedCrossRefGoogle Scholar
  82. 82.
    Chui CL, Lang CC, Wong PK et al (1998) The effect of mivacurium pretreatment on intraocular pressure changes induced by suxamethonium. Anaesthesia 53:486–510CrossRefGoogle Scholar
  83. 83.
    Stevens J, Shepherd J, Vories P et al (1996) A mixture of mivacurium and rocuronium is comparable in clinical onset to succinylcholine. J Clinical Anaesth 8:486CrossRefGoogle Scholar
  84. 84.
    Chui PT, Cheam EWS (1998) The use of low-dose mivacurium to facilitate insertion of the laryngeal mask airway. Anaesthesia 53:486–495CrossRefGoogle Scholar
  85. 85.
    Goudsouzian N, Chakravorti S, Denman W et al (1997) Prolonged mivacurium infusion in young and elderly adults. Can J Anaesth 44:955–962PubMedCrossRefGoogle Scholar
  86. 86.
    Cook RA, Freeman JA, Lai AA (1992) Pharmacokinetics of mivacurium in normal patients and in those with hepatic or renal failure. Br J Anaesth 69:580BCrossRefGoogle Scholar
  87. 87.
    Devlin JC, Head-Rapson AG, Parker CJR (1993) Pharmacodynamics of mivacurium chloride in patients with hepatic cirrhosis. Br J Anaesth 71:227–231PubMedCrossRefGoogle Scholar
  88. 88.
    Philips BJ, Hunter JM (1992) Use of mivacurium chloride by constant infusion in anephric patient. Br J Anaesth 68:492–495CrossRefGoogle Scholar
  89. 89.
    Mangar D, Kirchoff GT, Rose PL (1993) Prolonged neuromuscular block after mivacurium in a patient with end-stage renal disease. Anesth Analg 76:866–870PubMedGoogle Scholar
  90. 90.
    Wastila WB, Maehr RB, La Munion GL et al (1996) Preclinical pharmacology of cisatracurium besylate. Curr Op Anesthesiol 9[Suppl 1]:S2–S8Google Scholar
  91. 91.
    Boyd AH, Eastwood NB, Parker CJR et al (1996) Comparison of pharmacodynamics and pharmacokinetics of an infusion of cis-atracurium (51W89) or atracurium in critically ill patients undergoing mechanical ventilation in an Intensive Therapy Unit. Br J Anaesth 76:382PubMedCrossRefGoogle Scholar
  92. 92.
    Lien CA, Belmont MR, Abalos A et al (1995) The cardiovascular effects and histamine-releas-ing properties of 51W89 in patients undergoing nitrous oxid/opioid arbiturate anaesthesia. Anesthesiology 82:1131–1138PubMedCrossRefGoogle Scholar
  93. 93.
    Kisor DF, Schmith VD, Wargin WA et al (1996) Importance of the organ independent elimination of cisatracurium. Anesth Analg 83:1065–1071PubMedGoogle Scholar
  94. 94.
    Hemmerling T (1997) Determination of the therapeutic infusions (ETI) of cis-atracurium during isofiurane or propofol/alfentanyl anaesthesia by closed-loop feedback control. Anesthesiology 87:A843CrossRefGoogle Scholar
  95. 95.
    Wulf H, Kahl M, Ledowski T (1998) Augmentation of the neuromuscular blocking effects of cisatracurium during desflurane, sevoflurane, isoflurane or total i.v. anaesthesia. Br J Anaesth 80:308–312CrossRefGoogle Scholar
  96. 96.
    Savarese JJ, Viby-Mogensen J, Reich D et al (1996) The haemodynamic profile of cisatracurium. Curr Opin Anesthesiol 9[Suppl 1]:S36–S41CrossRefGoogle Scholar
  97. 97.
    Hunter JM, De Wolf A (1996) The pharmacodynamics and pharmacokinetics of cisatracurium in patients with renal or hepatic failure. Curr Op Anesthesiol 9[Suppl 1]:S42–S46CrossRefGoogle Scholar
  98. 98.
    Newman PJ (1997) A comparison of cis-atracurium (51W89) and atracurium by infusion in critically ill patients. Crit Care Med 25:1139–1142PubMedCrossRefGoogle Scholar
  99. 99.
    Savarese JJ, Wastila WB (1995) The future of the benzylisoquinolinium relaxants. Acta Anaesth Scand 39[Suppl] 106:91CrossRefGoogle Scholar
  100. 100.
    Butterworth J, James R, Prielipp RC et al (1998) Do shorter acting neuromuscular blocking drugs or opioids associate with reduce intensive care unit or hospital lengths of stay after coronary artery bypass grafting? Anesthesiology 88:1437–1446PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • V. Vilardi
    • 1
  • M. Sanfilippo
    • 1
  • M. K. Verdi
    • 1
  1. 1.Dept. of Anaesthesia and Special Odontostomatologic AnaesthesiaUniversity of L’AquilaL’AquilaItaly

Personalised recommendations