This review will proceed in a scholarly manner, starting from basic pharmacokinetic-pharmacodynamic principles, partly corrected by the arrival of new concept and new information, and arriving later at the clinical application of the new drugs.


Nitrous Oxide Continuous Infusion Effect Site Plasma Drug Concentration Noxious Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hughes MA, Glass PSA, Jacobs JR (1992) Context sensitive halftime in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology 76:334–341PubMedCrossRefGoogle Scholar
  2. 2.
    Schwilden H, Schuttler J, Stoekel H (1983) Phcokinetics as applied to total intravenous anesthesia: theoretical considerations. Anesthesia 38[Suppl]:51–51CrossRefGoogle Scholar
  3. 3.
    Ausems ME, Hug C, Stanski DR et al (1986) Plasma concentrations of alfentanil required to supplement nitrous oxide anesthesia for general surgery. Anesthesiology 65:362–373.PubMedCrossRefGoogle Scholar
  4. 4.
    Fisher DM (1996) (Almost) everything you learned about pks was (somewhat) wrong! Editorial. Anesth Analg 83:901–903PubMedGoogle Scholar
  5. 5.
    Eger EI (1974) Anesthetic uptake and action. Williams & Wilkins, Baltimore 1–25Google Scholar
  6. 6.
    Ausems ME, Vuyp J, Hug CC et al (1988) Comparison of a computer assisted infusion versus intermittent bolus administration of alfentanil as a supplement to nitrous oxide for lower abdominal surgery. Anesthesiology 68:851–861PubMedCrossRefGoogle Scholar
  7. 7.
    McEwan AI, Smith C, Dyar O et al (1993) Isoflurane Mac reduction by fentanyl. Anesthesiology 78:864–869PubMedCrossRefGoogle Scholar
  8. 8.
    Brunner MD, Braithwaite P, Jihaveri R et al (1994) The Mac reduction of isoflurane by sufentanil. Br J Anesth 72:42–46CrossRefGoogle Scholar
  9. 9.
    Lang E, Kapila E, Shlugman D et al (1996) The reduction of isoflurane MAC by remifentanil. Anesthesiology 85:71–78Google Scholar
  10. 10.
    Scott JC, Ponganis KV, Stanski DR (1985) EEG quantitation of narcotic effect: the comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology 62:234–241PubMedCrossRefGoogle Scholar
  11. 11.
    Scott JC, Cooke JE, Stanski JR (1991) Electroencephalographic quantitation of opioid effect: comparative pharmacodynamics of fentanyl and sufentanil. Anesthesiology 74:34–42PubMedCrossRefGoogle Scholar
  12. 12.
    White PF (1989) Clinical uses of intravenous anesthetic and analgesic infusions. Anesth Analg 68: 61–171Google Scholar
  13. 13.
    White PF, Dworsky W, Trevor AJ (1983) Comparison of continuous infusion fentanyl or keta-mine versus thiopental-determining the mean effective serum concentrations for outpatient surgery. Anesthesiology 59:564–569PubMedCrossRefGoogle Scholar
  14. 14.
    White PF (1983) Use of continuous infusion versus intermittent bolus administration of fentanyl or ketamine during outpatient anesthesia. Anesthesiology 59:294–300PubMedCrossRefGoogle Scholar
  15. 15.
    Pathak KS, Brown RH, Nash CL et al (1983) Continuous opioid infusion for scoliosis fusion surgery. Anesth Analg 62:841–845PubMedCrossRefGoogle Scholar
  16. 16.
    Kazama T, Ikeda K, Morita K (1997) Reduction by fentanyl of the Cp50 values of propofol and haemodynamic responses to various noxious stimuli. Anesthesiology 87:213–227PubMedCrossRefGoogle Scholar
  17. 17.
    Smith C, McEwan AI, Jhaveri R et al (1994) The interaction of fentanyl on the Cp50 of propofol for loss of consciousness and skin incision. Anesthesiology 81:820–828PubMedCrossRefGoogle Scholar
  18. 18.
    Wessen A, Persson PM, Nisson A et al (1993) Concentration effect relationships of propofol after total intravenous anesthesia. Acta Anaesth Scand 37:458–464CrossRefGoogle Scholar
  19. 19.
    Davidson JAH, Macleod AD, Howie JC et al (1993) Effective concentration 50 for propofol with and without 67% nitrous oxide. Acta Anesth Scand 37:458–464CrossRefGoogle Scholar
  20. 20.
    Saidman LJ, Eger EI (1964) Effect of nitrous oxide and of narcotic premedication on the alveolar concentration of halothane required for anesthesia. Anesthesiology 25:302–306PubMedCrossRefGoogle Scholar
  21. 21.
    Zbinden AM, Maggiorini M, Petersen-Felix S et al (1994) I. Motor reactions. Anesthesiology 80:253–260PubMedCrossRefGoogle Scholar
  22. 22.
    Hornbein TF, Eger EI, Winter PM et al (1982) The minimum alveolar concentration of nitrous oxide in man. Anesth AnaIg 61:553–556Google Scholar
  23. 23.
    Kopman AR, Lawson (1984) Milliampere requirements for supramaximal stimulation of the ulnar nerve with surface electrodes. Anesthesiology 61:83–85PubMedGoogle Scholar
  24. 24.
    Spelina KR, Coates D, Monk CR et al (1986) Dose requirements of propofol by infusion during nitrous oxide anaesthesia in man. I: Patients premedicated with morphine sulfate. Br J Anaesth 58:1080–1084PubMedCrossRefGoogle Scholar
  25. 25.
    Quasha AL, Eger FI, Tinker JH (1980) Determination and applications of MAC. Anesthesiology 53:315–334PubMedCrossRefGoogle Scholar
  26. 26.
    Eger EI, Saidman LJ, Brandstrater B (1965) Minimum alveolar anesthetic concentration: A standard of anesthetic potency. Anesthesiology 26:56–63Google Scholar
  27. 27.
    Ausems ME, Vuyk J, Hug CC et al (1988) Comparison of a computer-assisted infusion versus intermittent bolus administration of alfentanil as a supplement of nitrous oxide for lower abdominal surgery. Anesthesiology 68:851–861PubMedCrossRefGoogle Scholar
  28. 28.
    Pedersen CM, Thirstrups Nielsen-Kudsk JE (1993) Smooth muscle relaxant effects of propofol and ketamine in isolated guinea pig trachea. Eur J Pharmacol 238:75–80PubMedCrossRefGoogle Scholar
  29. 29.
    Glass PSA, Bloom M, Kearse L et al (1997) Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane and alfentanil in healthy volunteers. Anesthesiology 86:836–847PubMedCrossRefGoogle Scholar
  30. 30.
    Vuyk J, Lim T, Engbers FHM et al (1995) The pharmacodynamic interaction of propofol and alfentanil in lower abdominal surgery in female patients. Anesthesiology 83:8–22PubMedCrossRefGoogle Scholar
  31. 31.
    Dershwitz M, Randell GI Rosow CE et al (1995) Initial clinical experience with remifentanil, a new opioid metabolized by esterases. Anesth Analg 81:619–623PubMedGoogle Scholar
  32. 32.
    Cunningham FE, Koke JF, Muir KT et al (1995) Pharmacokinetic/pharmacodynamic evaluation of remifentanil GR90291 and alfentanil (abstract). Anesthesiology 83:A376Google Scholar
  33. 33.
    Schnider TH, Minto C, Camu F (1997) Model based calculation of safe remifentanil infusion rates for conscious sedation from non steady state data. Anesthesiology A355Google Scholar
  34. 34.
    Sebel et al (1995) Histamine concentrations and hemodynamic responses after remifentanil. Anesth Analg 80:990–993PubMedGoogle Scholar
  35. 35.
    Vinik HR, Bradley EL, Kissin I (1994) Triple anesthetic combination: propofol, midazolam, alfentanil. Anesth Analg 78:354–358PubMedCrossRefGoogle Scholar
  36. 36.
    Egan TD, Minto C, Hermann DJ (1996) Remifentanil versus alfentanil: comparative pharmacokinetics and pharmacodynamics in healthy adult male volunteers. Anesthesiology 84: 821–833PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • C. Melloni
    • 1
  1. 1.Dept. of Anaesthesia and Intensive CareLugo HospitalLugoItaly

Personalised recommendations