Pathogenetic Mechanisms of Autoimmunity

  • L. Adorini
Part of the Topics in Neuroscience book series (TOPNEURO)


The function of the immune system is to preserve the biological identity of the individual (self). This requires the capacity to distinguish self from nonself a discrimination primarily carried out by CD4+ T cells which have evolved to a sophisticated level of complexity in higher vertebrates. The basic strategy has been to generate a vast repertoire of antigen-specific receptors, distribute them clonally in different lymphocytes, and then eliminate cells capable of recognizing self antigens. This strategy at the same time renders possible the differentiation of lymphocytes potentially capable of recognizing nonself antigens. However complex the mechanisms utilized, self-nonself discrimination is teleologically simple: it positively selects T cells potentially capable of recognizing nonself while eliminating, physically or functionally, those responding to self-antigens.


Rheumatoid Arthritis Patient Experimental Allergic Encephalomyelitis Immunol Today Nonobese Diabetic Mouse Human Autoimmune Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mosmann TR, Cherwinski H, Bond MW et al. (1986) Two types of murine helper T cell clone. I Definition according to profile of lymphokine activities and secreted proteins. J Immunol 136: 2348–2357PubMedGoogle Scholar
  2. 2.
    Del Prete G, De Carli M, Mastromauro C et al. (1991) Purified protein derivative of Mycobacterium tuberculosis and excretory-secretory antigen(s) of Toxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper) profile of cytokine production. J Clin Invest 88: 346–350PubMedCrossRefGoogle Scholar
  3. 3.
    Romagnani S (1991) Human TH1 and TH2: doubt no more. Immunol Today 12: 256–257PubMedCrossRefGoogle Scholar
  4. 4.
    Erard F, Wild M-T, Garcia-Sanz JA, Le Gros G (1993) Switch of CD8 T cells to non-cytolytic CD8CD4 cells that make Th2 cytokines and help B cells. Science 260: 1802–1805PubMedCrossRefGoogle Scholar
  5. 5.
    Gately MK, Renzetti LM, Magram J et al. (1998) The interleukin-12/interleukin-12 receptor system: Role in normal and pathologic immune responses. Annu Rev Immunol 16: 495–521PubMedCrossRefGoogle Scholar
  6. 6.
    Paul WE, Seder RA (1994) Lymphocytes responses and cytokines. Cell 76: 241–251PubMedCrossRefGoogle Scholar
  7. 7.
    Nanda NK, Sercarz EE, Hsu D-H, Kronenberg M (1994) A unique pattern of lymphokine synthesis is a characteristic of certain antigen-specific suppressor T cell clones. Int Immunol 6: 731–737PubMedCrossRefGoogle Scholar
  8. 8.
    Groux H, O’Garra A, Bigler M et al. (1997) A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389: 737–742PubMedCrossRefGoogle Scholar
  9. 9.
    Kelso A, Groves P, Troutt AB, Francis K (1995) Evidence for the stochastic acquisition of cytokine profile by CD4+ T cells activated in a T helper type 2-like response in vivo. Eur J Immunol 25: 1168–1175PubMedCrossRefGoogle Scholar
  10. 10.
    Kelso A (1995) Th1 and Th2 subsets: Paradigms lost? Immunol Today 16: 374–379PubMedCrossRefGoogle Scholar
  11. 11.
    Pernis A, Gupta S, Gollob KJ et al. (1995) Lack of interferon γ receptor β chain and the prevention of interferon γ signaling in Th1 cells. Science 269: 245–247PubMedCrossRefGoogle Scholar
  12. 12.
    Bach EA, Szabo S, Dighe AS et al. (1995) Ligand-induced autoregulation of IFN- γ receptor β chain expression in T helper cell subsets. Science 270: 1215–1218PubMedCrossRefGoogle Scholar
  13. 13.
    Szabo SJ, Jacobson AG, Gubler U, Murphy KM (1995) Developmental commitment to the Th2 lineage by extinction of IL-12 signaling. Immunity 2: 665–675PubMedCrossRefGoogle Scholar
  14. 14.
    Rogge L, Barberis-Maino L, Biffi M et al. (1997) Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J Exp Med 185: 825–831PubMedCrossRefGoogle Scholar
  15. 15.
    Szabo SJ, Dighe AS, Gubler U, Murphy KM (1997) Regulation of the interleukin (IL)-12R β2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J Exp Med 185: 817–824PubMedCrossRefGoogle Scholar
  16. 16.
    Galbiati F, Rogge L,Guéry J-C et al. (1998) Regulation of the interleukin (IL)-12 receptor β2 subunit by soluble antigen and IL-12 in vivo. Eur J Immunol 28: 209–220PubMedCrossRefGoogle Scholar
  17. 17.
    Abbas AK, Murphy KM, Sher A (1997) Functional diversity of helper T lymphocytes. Nature 383: 787–793CrossRefGoogle Scholar
  18. 18.
    Hsieh C-S, Macatonia SE, Tripp CS et al. (1993) Development of Th1 CD4+ T cells through IL-12 produced by Listena-induced macrophages. Science 260: 547–549PubMedCrossRefGoogle Scholar
  19. 19.
    Manetti R, Parronchi P, Giudizi MG et al. (1993) Natural killer cell stimulatory factor (interleukin 12, IL-12) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med 177: 1199–1204PubMedCrossRefGoogle Scholar
  20. 20.
    Afonso LCC, Scharton TM, Vieira LQ et al. (1994) The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science 263: 235–237PubMedCrossRefGoogle Scholar
  21. 21.
    Kiniwa M, Gately M, Gubler U et al. (1992) Recombinant interleukin-12 suppresses the synthesis of IgE by interleukin-4 stimulated human lymphocytes. J Clin Invest 90: 262–266PubMedCrossRefGoogle Scholar
  22. 22.
    Schmitt E, Hoehn P, Huels C et al. (1994) T helper type 1 development of naive CD4+ T cells requires the coordinate action of interleukin-12 and interferon-γ and is inhibited by transforming growth factor-β. Eur J Immunol 24: 793–798PubMedCrossRefGoogle Scholar
  23. 23.
    Gajewski TF, Fitch FW (1988) Anti-proliferative effect of IFN-gamma in immune regulation. I. IFN-gamma inhibits the proliferation of Th2 but not Th1 murine helper T lymphocyte clones. J Immunol 140: 4245–4253PubMedGoogle Scholar
  24. 24.
    Moore K, O’Garra A, de Waal Malefyt R et al. (1993) Interleukin-10. Annu Rev Immunol 11: 165–190PubMedCrossRefGoogle Scholar
  25. 25.
    D’Andrea A, Aste-Amezaga M, Valiante NM et al. (1993) Interleukin 10 (IL-10) inhibits human lymphocyte interferon-γ production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J Exp Med 178: 1041–1048PubMedCrossRefGoogle Scholar
  26. 26.
    de Waal Malefyt R, Figdor CG, Huijbens R et al. (1993) Effects of IL-13 on phenotype, cytokine production, and cytotoxic function of human monocytes. Comparison with IL-4 and modulation by IFN-γ or IL-10. J Immunol 151: 6370–6381Google Scholar
  27. 27.
    Powrie F, Coffmann RL (1993) Cytokine regulation of T cell function: potential for therapeutic intervention. Immunol Today 14: 270–274PubMedCrossRefGoogle Scholar
  28. 28.
    O’Garra A, Murphy K (1993) T-cell subsets in autoimmunity. Curr Opin Immunol 5: 880–886PubMedCrossRefGoogle Scholar
  29. 29.
    Liblau RS, Singer SM, McDevitt HO (1995) Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today 16: 34–38PubMedCrossRefGoogle Scholar
  30. 30.
    Trembleau S, Germann T, Gately MK, Adorini L (1995) The role of IL-12 in the induction of organ-specific autoimmune diseases. Immunol Today 16: 383–386PubMedCrossRefGoogle Scholar
  31. 31.
    Ando DG, Clayton J, Kong D et al. (1989) Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th1 lymphokine subtype. Cell Immunol 124: 132–143PubMedCrossRefGoogle Scholar
  32. 32.
    Haskins K, McDuffie M (1990) Acceleration of diabetes in young NOD mice with a CD4+ islet specific T cell clone. Science 249: 1433–1436PubMedCrossRefGoogle Scholar
  33. 33.
    Bergman B, Haskins K (1994) Islet-specific T-cell clones from the NOD mouse respond to beta-granule antigen. Diabetes 43: 197–203PubMedCrossRefGoogle Scholar
  34. 34.
    Katz JD, Benoist C, Mathis D (1995) T helper cell subsets in insulin-dependent diabetes. Science 268: 1185–1188PubMedCrossRefGoogle Scholar
  35. 35.
    Yang X-D, Tisch R, Singer SM et al. (1994) Effect of tumor necrosis factor α on insulin-dependent diabetes mellitus in NOD mice. I. The early development of autoimmunity and the diabetogenic process. J Exp Med 180: 995–1004PubMedCrossRefGoogle Scholar
  36. 36.
    Wogesen L, Lee M-S, Sarvetnick N (1994) Production of interleukin 10 by islet cells accelerates immune-mediated destruction of β cells in nonobese diabetic mice. J Exp Med 179: 1379–1384CrossRefGoogle Scholar
  37. 37.
    Anderson JT, Cornelius JG, Jarpe AJ et al. (1993) Insulin-dependent diabetes in the NOD mouse model. II. Beta cell destruction in autoimmune diabetes is a Th2 and not a Th1 mediated event. Autoimmunity 15: 113–122PubMedCrossRefGoogle Scholar
  38. 38.
    Akhtar I, Gold JP, Pan L-Y et al. (1995) CD4+ β islet cell-reactive T cell clones that suppress autoimmune diabetes in nonobese diabetic mice. J Exp Med 182: 87–97PubMedCrossRefGoogle Scholar
  39. 39.
    Rapoport MJ, Jaramillo A, Zipris D et al. (1993) Interleukin 4 reverses T cell proliferative unresponsiveness and prevents the onset of diabetes in nonobese diabetic mice. J Exp Med 178: 87–99PubMedCrossRefGoogle Scholar
  40. 40.
    Pennline KJ, Roquegaffney E, Monahan M (1994) Recombinant human IL-10 prevents the onset of diabetes in the nonobese diabetic mouse. Clin Immunol Immunopathol 71: 169–175PubMedCrossRefGoogle Scholar
  41. 41.
    Fowell D, Mason D (1993) Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J Exp Med 177: 627–636PubMedCrossRefGoogle Scholar
  42. 42.
    Scott B, Liblau R, Degermann S et al. (1994) A role for non-MHC genetic polymorphism in susceptibility to spontaneous autoimmunity. Immunity 1: 1–20CrossRefGoogle Scholar
  43. 43.
    Racke MK, Bonomo A, Scott DE et al. (1994) Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J Exp Med 180: 1961–1966PubMedCrossRefGoogle Scholar
  44. 44.
    Allen JB, Wong HL, Costa GL et al. (1993) Suppression of monocyte function and differential regulation of IL-1 and IL-1ra by IL-4 contribute to resolution of experimental arthritis. J Immunol 151: 4344–4351PubMedGoogle Scholar
  45. 45.
    van der Veen RC, Stohlman SA (1993) Encephalitogenic Th1 cells are inhibited by Th2 cells with related peptide specificity: relative roles of interleukin (IL)-4 and IL-10. J Neuroimmunol 48: 213–220PubMedCrossRefGoogle Scholar
  46. 46.
    Khoury SJ, Hancock WW, Weiner HL (1992) Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor β, interleukin 4, and prostaglandin E expression in the brain. J Exp Med 176: 1355–1364Google Scholar
  47. 47.
    Trembleau S, Penna G, Gregori S et al. (1997) Deviation of pancreas-infiltrating cells to Th2 by interleukin-12 antagonist administration inhibits autoimmune diabetes. Eur J Immunol 27: 2230–2239CrossRefGoogle Scholar
  48. 48.
    Rothe H, O’Hara RM, Martin S, Kolb H (1997) Suppression of cyclophosphamide induced diabetes development and pancreatic Th1 reactivity in NOD mice treated with the interleukin (IL)-12 antagonist IL-12(p40)2. Diabetologia 40: 641–646PubMedCrossRefGoogle Scholar
  49. 49.
    Healey D, Ozegbe P, Arden S et al. (1995) In vivo activity and in vitro specificity of CD4+ Th1 and Th2 cells derived from the spleens of diabetic NOD mice. J Clin Invest 95: 2979–2985PubMedCrossRefGoogle Scholar
  50. 50.
    Moritani M, Yoshimoto K, Tashiro F et al. (1994) Transgenic expression of IL-10 in pancreatic islet A cells accelerates autoimmune insulitis and diabetes in non-obese diabetic mice. Int Immunol 6: 1927–1936PubMedCrossRefGoogle Scholar
  51. 51.
    De Carli M, D’Elios M, Mariotti S et al. (1993) Cytolytic T cells with Th1-like cytokine profile predominate in retroorbital lymphocytic infiltrates of Graves’ ophthalmopathy. J Clin Endocrinol Metab 77: 1120–1124PubMedCrossRefGoogle Scholar
  52. 52.
    Brod SA, Benjamin D, Hafler DA (1991) Restricted T cell expression of IL-2, IFN-γ mRNA in human inflammatory disease. J Immunol 147: 810–815PubMedGoogle Scholar
  53. 53.
    Foulis AK, McGill M, Farquahrson MA (1991) Insulitis in type I (insulin-dependent) diabetes mellitus in man. Macrophages, lymphocytes and interferon-γ-containing cells. J Pathol 165: 97–103PubMedCrossRefGoogle Scholar
  54. 54.
    Miltenburg AM, van Laar JM, de Kuiper R et al. (1992) T cells cloned from human rheumatoid synovial membrane functionally represent the Th1 subset. Scand J Immunol 35: 603–610PubMedCrossRefGoogle Scholar
  55. 55.
    De Carli M, D’Elios MM, Zancuoghi G et al. (1994) Human TH1 and TH2 cells: functional properties, regulation of development and role in autoimmunity. Autoimmunity 18: 301–308PubMedCrossRefGoogle Scholar
  56. 56.
    Simon AK, Seipelt E, Sieper J (1994) Divergent T-cell cytokine patterns in inflammatory arthritis. Proc Natl Acad Sci USA 91: 8562–8566PubMedCrossRefGoogle Scholar
  57. 57.
    Romagnani S (1994) Lymphokine production by human T cells in disease states. Annu Rev Immunol 12: 227–257PubMedCrossRefGoogle Scholar
  58. 58.
    Kingsley G, Lanchbury J, Panayi G (1996) Immunotherapy in rheumatic disease: An idea whose time has come — or gone? Immunol Today 17: 9–12PubMedCrossRefGoogle Scholar
  59. 59.
    Keffer J, Probert L, Cazlaris H et al. (1991) Transgenic mice expressing human tumor necrosis factor — a predictive genetic model of arthritis. EMBO J 13: 4025–4031Google Scholar
  60. 60.
    Williams RO, Feldmann M, Maini RN (1992) Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc Natl Acad Sci USA 89: 9784–9788PubMedCrossRefGoogle Scholar
  61. 61.
    Elliott MJ, Maini RN, Feldmann M et al. (1993) Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor. Arthritis Rheum 36: 1681–1690PubMedCrossRefGoogle Scholar
  62. 62.
    Haak-Frendscho M, Marsters SA, Mordenti J et al. (1994) Inhibition of TNF by a TNF receptor immunoadhesin. Comparison to an anti-TNF monoclonal antibody. J Immunol 152: 1347–1353PubMedGoogle Scholar
  63. 63.
    Baker D, Butler D, Scallon BJ et al. (1994) Control of established experimental allergic encephalomyelitis by inhibition of tumor necrosis factor (TNF) activity within the central nervous system using monoclonal antibodies and TNF receptor-immunoglobulin fusion proteins. Eur J Immunol 24: 2040–2048PubMedCrossRefGoogle Scholar
  64. 64.
    Reiner SL, Locksley RM (1995) The regulation of immunity to Leishmania major. Annu Rev Immunol 13: 151–177PubMedCrossRefGoogle Scholar
  65. 65.
    Guéry J-C, Galbiati F, Smiroldo S, Adorini L (1997) Non MHC-linked Th2 cell development induced by soluble protein administration predicts susceptibility to Leishmania major infection. J Immunol 159: 2147–2153PubMedGoogle Scholar
  66. 66.
    Guéry J-C, Galbiati F, Smiroldo S, Adorini L (1996) Selective development of Th2 cells induced by continuous administration of low dose soluble proteins to normal and β2-microglobulin-deficient BALB/c mice. J Exp Med 183: 485–497PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • L. Adorini
    • 1
  1. 1.Roche Milano RicercheMilanItaly

Personalised recommendations