Immunotherapies for Multiple Sclerosis

  • P. Perini
  • P. Gallo
Part of the Topics in Neuroscience book series (TOPNEURO)


Multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the central nervous system (CNS), is currently regarded as an organ-specific, T-cell-mediated autoimmune disease. Although the immunopathogenesis of MS is largely hypothetical and several immune-mediated processes may account for myelin damage, it is widely accepted that the autoimmune process that leads activated, antigen-specific CD4+ T cells to migrate into the brain and initiate inflammation starts in the peripheral immune system. If autoreactive T lymphocytes play a pivotal role in initiating the disease, then selective immunotherapeutic strategies have to be designed to delete these cells by apoptotic mechanism(s) or to block their activation by inducing a state of anergy or suppression. It is a common feeling that the rapid progress in biotechnology and immunology will make available, within a few years, many potential treatments for MS. This article is a concise overview of only some of the immunotherapies, mainly based on the antigen-specific modulation of the immune response, elaborated in recent years. Most of the immune-selective therapies here described have been designed for and successfully applied to prevent, suppress and/or treat the animal model of inflammatory autoimmune demyelinating disease, the experimental allergic encephalomyelitis (EAE). Some of these therapies have been also applied to human pathology, and will be herewith described with more details.


Multiple Sclerosis Experimental Autoimmune Encephalomyelitis Myelin Basic Protein Experimental Allergic Encephalomyelitis Myelin Oligodendrocyte Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Steinman L, Rosenbaum JT, Sriram S, McDevitt HO (1981) In vivo effects of antibodies to immune response gene products: prevention of experimental allergic encephalomyelitis. Proc Natl Acad Sci USA 78: 7111–7118PubMedCrossRefGoogle Scholar
  2. 2.
    Aharoni R, Teitelbaum D, Sela M, Arnon R (1997) Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 94: 10821–10826PubMedCrossRefGoogle Scholar
  3. 3.
    Lamont AG, Sette A, Fujinami R et al. (1990) Inhibition of experimental autoimmune encephalomyelitis induction in SJL/J mice by using a peptide with high affinity for IAs molecules. J Immunol 145:1687–1693PubMedGoogle Scholar
  4. 4.
    Gautam AM (1995) Self and non-self peptides treat autoimmune encephalomyelitis: T cell anergy or competition for major histocompatibility complex class II binding? Eur J Immunol 25: 2059–2063PubMedCrossRefGoogle Scholar
  5. 5.
    Spack EG (1998) Therapeutic and diagnostic application of soluble HLA-DR2: myelin peptide complexes in multiple sclerosis. Presented at the IBC’s 6th International Symposium on Multiple Sclerosis. Continued Breakthroughs and Clinical Trials. Washington DC, 10–11 December 1998Google Scholar
  6. 6.
    Wauben MHM, Joosten I, Schlief A et al. (1994) Inhibition of experimental autoimmune encephalomyelitis by MHC class II binding competitor peptides depends on the relative MHC binding affinity of the disease-inducing peptide. J Immunol 152: 4211–4120PubMedGoogle Scholar
  7. 7.
    Bright JJ, Topham DJ, Nag B et al. (1996) Vaccination with peptides from MHC class II beta chain hypervariable region causes allele-specific suppression of EAE. J Neuroimmunol 67: 119–124PubMedCrossRefGoogle Scholar
  8. 8.
    Nicolle MW, Nag B, Sharma SD et al. (1994) Specific tolerance to an acetylcholine receptor epitope induced in vitro in myasthenia gravis CD4+ lymphocytes by soluble major histocompatibility complex class II-peptide complexes. J Clin Invest 93: 1361–1369PubMedCrossRefGoogle Scholar
  9. 9.
    Sharma SD, Nag B, Su XM et al. (1991) Antigen-specific therapy of experimental autoimmune encephalomyelitis by soluble class II major histocompatibility complex-peptide complexes. Proc Natl Acad Sci USA 88: 11465–11469PubMedCrossRefGoogle Scholar
  10. 10.
    Spack EG, McCutcheon M, Corbelletta N et al. (1995) Induction of tolerance in experimental autoimmune myasthenia gravis with solubilized MHC class II: acetylcholine receptor peptide complexes. J Autoimmun 8: 787–807PubMedCrossRefGoogle Scholar
  11. 11.
    Vandenbark AA, Offner H, Reshef T et al. (1985) Specificity of T cell lines for peptides of myelin basic protein. J Immunol 135: 229–235PubMedGoogle Scholar
  12. 12.
    Acha-Orbea H, Mitchell DJ, Timmerman L et al. (1988) Limited heterogeneity of T-cell receptors from lymphocytes mediating auto-immune encephalomyelitis allows specific immune intervention. Cell 54: 263–273PubMedCrossRefGoogle Scholar
  13. 13.
    Lider O, Reshef T, Beraud E et al. (1988) Anti-idiotypic network induced by T cell vaccination against experimental autoimmune encephalomyelitis. Science 239: 181–185PubMedCrossRefGoogle Scholar
  14. 14.
    Lohse AW, Mor F, Karin N, Cohen IR (1989) Control of experimental autoimmune encephalomyelitis by T cells responding to activated T cells. Science 244: 820–824PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang J, Raus J (1993) T cell vaccination in autoimmune diseases. From laboratory to clinic. Hum Immunol 38: 87–96PubMedCrossRefGoogle Scholar
  16. 16.
    Ben-Nun A, Cohen IR (1981) Vaccination against autoimmune encephalomyelitis (EAE): attenuated autoimmune T lymphocytes confer resistance to induction of active EAE but not to EAE mediated by the intact T lymphocyte line. Eur J Immunol 11: 949–952PubMedCrossRefGoogle Scholar
  17. 17.
    Ben-Nun A, Wekerle H, Cohen IR (1981) Vaccination against autoimmune encephalomyelitis with T-lymphocyte line cells reactive against myelin basic protein. Nature 11: 949–952Google Scholar
  18. 18.
    Zhang J, Medaer R, Stinissen P et al. (1993) MHC restricted clonotypic depletion of human myelin basic protein-reactive T cells by T cell vaccination. Science 261: 1451–1454PubMedCrossRefGoogle Scholar
  19. 19.
    Medaer R, Stinissen P, Truyen L et al. (1995) Depletion of myelin basic protein autoreactive T cells by T-cell vaccination: pilot trial in multiple sclerosis. Lancet 346: 807–808PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang J, Vandevyver C, Stinissen P, Raus J (1995) In vivo clonotypic regulation of human myelin basic protein-reactive T cells by T cell vaccination. J Immunol 155: 5868–5877PubMedGoogle Scholar
  21. 21.
    Hafler DA, Saadeh MG, Kuchroo VK et al. (1996) TCR usage in human and experimental demyelinating disease. Immunol Today 17:152–159PubMedCrossRefGoogle Scholar
  22. 22.
    Martin D, McFarland HF, McFarlin DE (1992) Immunological aspects of demyelinanting disease. Annu Rev Immunol 10: 153–187PubMedCrossRefGoogle Scholar
  23. 23.
    Holhlfeld R, Mainl E, Weber F et al. (1995) The role of autoimmune T lymphocytes in the pathogenesis of multiple sclerosis. Neurology 25: 531–538Google Scholar
  24. 24.
    Meinl E, Hoch RM, Dormair K et al. (1997) Encephalitogenic potential of myelin basic protein specific T cells isolated from normal rhesus macaques. Am J Pathol 159: 445–453Google Scholar
  25. 25.
    Sun JB, Link H, Olsson T et al. (1991) T and B cell responses to myelin-oligodendrocyte glycoprotein in multiple sclerosis. J Immunol 146: 1490–1495PubMedGoogle Scholar
  26. 26.
    Sun JB, Olsson T, Wang WZ et al. (1991) Autoreactive T and B cells responding to myelin proteolipid protein in multiple sclerosis and controls. Eur J Immunol 21: 1461–1468PubMedCrossRefGoogle Scholar
  27. 27.
    Kerlero de Rosbo N, Milo R, Lees MB et al. (1993) Reactivity of myelin antigens in multiple sclerosis. Peripheral blood lymphocytes respond predominantly to myelin oligodendrocyte glycoprotein. J Clin Invest 92: 2602–2608PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang J, Burger D, Saruhan G et al. (1993) The T lymphocyte response against myelin-associated glycoprotein and myelin basic protein in patients with multiple sclerosis. Neurology 43: 403–407PubMedCrossRefGoogle Scholar
  29. 29.
    Anderton SM, Wraith DC (1998) Hierarchy in the ability of T cell epitopes to induce peripheral tolerance to antigens from myelin. Eur J Immunol 28: 1251–1261PubMedCrossRefGoogle Scholar
  30. 30.
    Sercarz EE, Lehmann PV, Ametani A et al. (1993) Dominance and crypticity of T cell antigenic determinants. Annu Rev Immunol 11: 729–766PubMedCrossRefGoogle Scholar
  31. 31.
    Miller SD, McRae BL, Vanderlugt CL et al. (1995) Evolution of the T cell repertoire during the course of experimental immune-mediated demyelinating disease. Immunol Rev 144: 225–244PubMedCrossRefGoogle Scholar
  32. 32.
    Yu M, Johnson JM, Tuohy VK (1996) A predictable sequential determinant spreading cascade invariably accompanies progression of experimental autoimmune encephalomyelitis: a basis for peptide-specific therapy after onset of clinical disease. J Exp Med 183: 1777–1788PubMedCrossRefGoogle Scholar
  33. 33.
    Davis MM, Bjorkman PJ (1998) T-cell antigen receptor genes and T-cell recognition. Nature 334: 395–402CrossRefGoogle Scholar
  34. 34.
    Williams WV, Weiner DB, Wadsworth S, Greene MI (1988) The antigen-major histocompatibility complex-T-cell receptor interaction: A structural analysis. Immunol Rev 7: 339–344CrossRefGoogle Scholar
  35. 35.
    Vandenbark AA, Hashim GA, Offner H (1996) T cell receptor peptides in treatment of autoimmune disease: rationale and potential. J Neurosci Res 43: 391–402PubMedCrossRefGoogle Scholar
  36. 36.
    Vandenbark AA, Hashim GA, Offner H (1989) Immunization with a synthetic T-cell receptor V-region peptide protects against experimental autoimmune encephalomyelitis. Nature 341: 541–544PubMedCrossRefGoogle Scholar
  37. 37.
    Offner H, Hashim GA, Vandenbark AA (1991) T cell receptor peptide therapy triggers autoregulation of experimental encephalomyelitis. Science 251:430–432PubMedCrossRefGoogle Scholar
  38. 38.
    Kotzin BL, Karuturi S, Chou YK et al. (1991) Preferential T-cell receptor β-chain variable gene use in myelin basic protein-reactive T-cell clones from patients with multiple sclerosis. Proc Natl Acad Sci USA 88: 9161–9165PubMedCrossRefGoogle Scholar
  39. 39.
    Oksenberg JR (1993) Selection of T-cell receptor Vβ-Dβ-Jβ gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature 362: 68–70PubMedCrossRefGoogle Scholar
  40. 40.
    Shimonkevitz R, Murray R, Kotzin B (1995) Characterization of T-cell receptor Vβ usage in the brain of a subject with multiple sclerosis. Ann N Y Acad Sci 756: 305–306PubMedCrossRefGoogle Scholar
  41. 41.
    Bourdette DN, Whitham RH, Chou YK et al. (1994) Immunity to TCR peptides in multiple sclerosis. I. Successful immunization of patients with synthetic Vβ5.2 and Vβ6.1 CDR2 peptides. J Immunol 152: 2510–2519PubMedGoogle Scholar
  42. 42.
    Vandenbark AA, Chou YK, Whitham R et al. (1996) Treatment of multiple sclerosis with T-cell receptor peptides: results of a double-blind pilot trial. Nat Med 2: 1109–1115PubMedCrossRefGoogle Scholar
  43. 43.
    Chunduru SK, Sutherland RM, Stewart GA et al. (1996) Exploitation of the Vβ8.2 T cell receptor in protection against experimental autoimmune encephalomyelitis using a live vaccinia virus vector. J Immunol 156: 4940–4945PubMedGoogle Scholar
  44. 44.
    Waisman A, Ruiz PJ, Hirschberg DL et al. (1996) Suppressive vaccination with DNA encoding a variable region gene of the T cell receptor prevents autoimmune encephalomyelitis and activates Th2 immunity. Nat Med 2: 857–859CrossRefGoogle Scholar
  45. 45.
    Swierkosz JE, Swanborg RH (1997) Immunoregulation of experimental allergic encephalomyelitis: condition for induction of suppresor cells and analysis of mechansim. J Immunol 119: 1501–1506Google Scholar
  46. 46.
    Alvord EC Jr, Shaw CM, Hruby S, Kies MW (1965) Encephalitogen-induced inhibition of experimental allergic encephalomyelitis: prevention, suppression and therapy. Ann N Y Acad Sci 122: 333–345PubMedCrossRefGoogle Scholar
  47. 47.
    MacPherson CF, Yo SL (1973) Studies on brain antigens. VI. Prevention of experimental allergic encephalomyelitis by a water-soluble spinal cord protein, 1-scp. J Immunol 110: 1371–1375PubMedGoogle Scholar
  48. 48.
    MacPherson CF, Armstrong H, Tan O (1977) Prevention of experimental allergic encephalitis in guinea pigs with spinal cord protein: optimum pretreatment schedules and reappraisal of plausible mechanisms. Immunology 33: 161–166PubMedGoogle Scholar
  49. 49.
    Marušic S, Tonegawa S (1997) Tolerance induction and autoimmune encephalomyelitits amelioration after adminiistration of myelin basic protein-derived peptide. J Exp Med 186: 507–515PubMedCrossRefGoogle Scholar
  50. 50.
    Alvord EC Jr, Shaw CM, Hruby S, Kies MW (1979) Has myelin basic protein received a fair trial in the treatment of multiple sclerosis? Ann Neurol 6: 461–468PubMedCrossRefGoogle Scholar
  51. 51.
    Kennedy MK, Dal Canto MC, Trotter JL, Miller SD (1988) Specific immune regulation of chronic-relapsing experimental autoimmune encephalomyelitis in mice. J Immunol 141: 2986–2993PubMedGoogle Scholar
  52. 52.
    Tan L-J, Kennedy MK, Dal Canto MC, Miller SD (1991) Successful treatment of paralytic relapses in adoptive experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance. J Immunol 147: 1797–1802PubMedGoogle Scholar
  53. 53.
    Vandenbark AA,Vainiene M, Ariail K et al. (1996) Prevention and treatment of relapsing autoimmune encephalomyelitis with myelin peptide-coupled splenocytes. J Neurosci Res 45: 430–438PubMedCrossRefGoogle Scholar
  54. 54.
    McKenna RM, Carter BG, Paterson JA, Sehon AH (1983) The suppression of experimental allergic encephalomyelitis in Lewis rats by treatment with myelin basic protein-cell conjugates. Cell Immunol 81: 391–402PubMedCrossRefGoogle Scholar
  55. 55.
    Malokty MK, Pope L, Miller SD (1994) Epitope and fuctional specificity of peripheral tolerance induction in experimental autoimmune encephalomyelitis in adult Lewis rats. J Immunol 153: 841–851Google Scholar
  56. 56.
    Jenkins MK, Schwartz RH (1987) Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med 165: 301–319CrossRefGoogle Scholar
  57. 57.
    Sakai K, Zamvil SS, Mitchell DJ et al. (1989) Prevention of experimental encephalomyelitis with peptides that block interaction of T cells with major histocompatibility complex proteins. Proc Natl Acad Sci USA 86: 9470–9474PubMedCrossRefGoogle Scholar
  58. 58.
    Kuchroo VK, Das MP, Brown JA et al. (1995) B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell 80: 707–718PubMedCrossRefGoogle Scholar
  59. 59.
    Nicholson LB, Murtaza A, Hafler BP et al. (1997) A T cell receptor antagonist peptide induces T cells that mediate bystander suppression and prevent autoimmune encephalomyelitis induced with multiple myelin antigens. Proc Natl Acad Sci USA 4: 9279–9284CrossRefGoogle Scholar
  60. 60.
    Gaur A (1998) Development of altered peptide ligand-based therapy for multiple sclerosis. Presented at the IBC’s 6th International Symposium on Multiple Sclerosis. Continued Breakthroughs and Clinical Trials. Washington DC, 10–11 December 1998Google Scholar
  61. 61.
    Arnon R (1996) The development of Cop-1 (Copaxone), an innovative drug for the treatment of multiple sclerosis. Immunol Lett 50: 1–15PubMedCrossRefGoogle Scholar
  62. 62.
    Keith AR, Arnon R, Tietelbaum D et al. (1979) The effect of Cop-1, a synthetic polypeptide on chronic-relapsing EAE in guinea pigs. J Neurol Sci 42: 267–273PubMedCrossRefGoogle Scholar
  63. 63.
    Tietelbaum D, Fridkis-Hareli M, Arnon R, Sela M (1996) Copolymer 1 inhibits chronic relapsing experimental allergic encephalomyelitis induced by proteolipid protein (PLP) peptides in mice and interferes with PLP-specific T cell responses. J Neuroimmunol 64: 209–217CrossRefGoogle Scholar
  64. 64.
    Ben-Nun A, Mendel I, Bakimer R et al. (1996) The autoimmune reactivity to myelin oligodendrocyte glycoprotein (MOG) in multiple sclerosis is potentially pathogenic: effect of copolymer 1 on MOG-induced disease. J Neurol 243(Suppl 1): S14–S22PubMedCrossRefGoogle Scholar
  65. 65.
    Fridkis-Hareli M, Teitelbaum D, Gurevich E et al. (1994) Direct binding of myelin basic protein and synthetic copolymer 1 to class II major histocompatibility complex molecules on living antigen presenting cells — specificity and promiscuity. Proc Natl Acad Sci USA 91: 4872–4876PubMedCrossRefGoogle Scholar
  66. 66.
    Racke MK, Martin R et al. (1992) Copolymer-1-induced inhibition of antigen-specific T cell activation: interference with antigen presentation. J Neuroimmunol 37: 75–84PubMedCrossRefGoogle Scholar
  67. 67.
    Tietelbaum D, Milo R et al. (1992) Synthetic copolymer-1 inhibits human T-cell line specific for myelin basic protein. Proc Natl Acad Sci USA 89: 137–141CrossRefGoogle Scholar
  68. 68.
    Bornstein MB, Miller A, Slagle S et al. (1988) A pilot trial of Cop-1 in exacerbating-remitting multiple sclerosis. N Engl J Med 317: 408–414CrossRefGoogle Scholar
  69. 69.
    Bornstein MB, Miller A, Slagle S et al. (1991) A placebo-controlled, double-blind, randomized, two-center, pilot trial of Cop-1 in chronic progressive multiple sclerosis. Neurology 41: 533–539PubMedCrossRefGoogle Scholar
  70. 70.
    Johnson KP, Brooks BR, Cohen JA et al. (1995) Copolymer I reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis. Results of a phase III multicentre, double-blind, placebo-controlled trial. Neurology 45: 1268–1276PubMedCrossRefGoogle Scholar
  71. 71.
    Cohen JA, Grossman RI, Udupa JK et al. (1995) Assessment of the efficacy of copolymer-1 in the treatment of multiple sclerosis by quantitative MRI. Neurology 45 (Suppl 4): A418 (abstract)Google Scholar
  72. 72.
    Critchfield JM, Racke MK, Zuñiga-Pflücker JC (1994) T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 263: 1139–1143PubMedCrossRefGoogle Scholar
  73. 73.
    Gaur A, Wiers B, Liu A et al. (1992) Amelioration of autoimmune encephalomyelitis by myelin basic protein synthetic peptide-induced anergy. Science 258: 1491–1494PubMedCrossRefGoogle Scholar
  74. 74.
    Gaur A, Boehme SE, Chalmers D et al. (1997) Amelioration of relapsing experimental autoimmune encephalomyelitis with altered myelin basic protein peptides involves different cellular mechanisms. J Neuroimmunol 74: 149–158PubMedCrossRefGoogle Scholar
  75. 75.
    Karin N, Mitchell DJ, Broke S et al. (1994) Reversal of experimental autoimmune encephalomyelitis by a soluble peptide variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of interferon gamma and tumor necrosis factor alpha production. J Exp Med 180: 2227–2237PubMedCrossRefGoogle Scholar
  76. 76.
    Miller SD, Wetzig RP, Claman HN (1979) The induction of cell mediated immunity and tolerance with protein antigens coupled with syngeneic lymphoid cells. J Exp Med 149: 758–773PubMedCrossRefGoogle Scholar
  77. 77.
    Miller SD, Tan LJ, Pope L et al. (1992) Antigen-specific tolerance as a therapy for autoimmune encephalomyelitis. Int Rev Immunol 9: 203–222PubMedCrossRefGoogle Scholar
  78. 78.
    Pope L, Paterson PY, Miller SD (1992) Antigen-specific inhibition of the adoptive transfer of experimental autoimmune encephalomyelitis in Lewis rats. J Neuroimmunol 37: 177–190PubMedCrossRefGoogle Scholar
  79. 79.
    Racke MK, Crichfield JM, Quigley L et al. (1996) Intravenous antigen administration as a therapy for autoimmune demyelinating disease. Ann Neurol 39: 46–56PubMedCrossRefGoogle Scholar
  80. 80.
    Willenborg DO, Staten EA, Witting GF (1978) Experimental allergic encephalomyelitis: modulation by intraventricular injection of myelin basic protein. Exp Neurol 61: 527–536PubMedCrossRefGoogle Scholar
  81. 81.
    Willenborg DO, Staykova MA (1988) Approaches to the treatment of central nervous system autoimmune disease using specific neuroantigen. Immunol Cell Biol 76: 91–103CrossRefGoogle Scholar
  82. 82.
    Weiner HL, Friedman A, Miller A et al. (1994) Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu Rev Immunol 12: 809–837PubMedCrossRefGoogle Scholar
  83. 83.
    Higgings P, Weiner HL (1988) Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein and its fragments. J Immunol 140: 440–445Google Scholar
  84. 84.
    Bitar DM, Whitacre CC (1998) Suppression of experimental autoimmune encephalomyelitis by the oral administration of myelin basic protein. Cell Immunol 112: 364–370CrossRefGoogle Scholar
  85. 85.
    Brod SA, Al-Sabbgh A, Sobel RA et al. (1992) Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin antigens. IV. Suppression of chronic relapsing disease in the Lewis rat and strain 13 guinea pig. Ann Neurol 29: 615–622CrossRefGoogle Scholar
  86. 86.
    Miller A, Lider O, Al-Sabbagh A, Weiner HL (1992) Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. V. Hierarchy of suppression by myelin basic protein from different species. J Neuroimmunol 39: 243–250PubMedCrossRefGoogle Scholar
  87. 87.
    Friedman A, Weiner HL (1994) Induction of anergy or active suppression following oral tolerance is determined by frequency of feeding and antigen dosage. Proc Natl Acad Sci USA 91: 6688–6692PubMedCrossRefGoogle Scholar
  88. 88.
    Chen Y, Inobe J et al. (1995) Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 376: 177–180PubMedCrossRefGoogle Scholar
  89. 89.
    Weiner HL (1997) Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol Today 18: 335–341PubMedCrossRefGoogle Scholar
  90. 90.
    Weiner HL, Mackin GA, Matsui M et al. (1993) Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 259: 1321–1324PubMedCrossRefGoogle Scholar
  91. 91.
    Slavin A, Maron R, Komagata Y, Weiner HL (1998) Oral administration of IL-4 and IL-10 enhances the induction of low dose oral tolerance. J Neuroimmunol 90(1): 84 (abstract)CrossRefGoogle Scholar
  92. 92.
    Soos JM, Johnson HM, Weiner HL, Zamvil SS (1998) Interferon tau induction of Th2 cytokines and synergy with oral MBP for treatment of experimental allergic encephalomyelitis. J Neuroimmunol 90(1): 84 (abstract)Google Scholar
  93. 93.
    Cobbold SP, Qin S, Leong LYW et al. (1992) Reprogramming the immune system for peripheral tolerance with CD4 and CD8 monoclonal antibodies. Immunol Rev 129: 165–201PubMedCrossRefGoogle Scholar
  94. 94.
    Qin S, Cobbold S, Benjamin R, Waldmann H (1989) Induction of classical transplantation tolerance in the adult. J Exp Med 169: 779–794PubMedCrossRefGoogle Scholar
  95. 95.
    Qin S, Wise M, Cobbold S et al. (1990) Induction of tolerance in peripheral T-cells with monoclonal antibodies. Eur J Immunol 20: 2737–2745PubMedCrossRefGoogle Scholar
  96. 96.
    Shizuro JA, Alters SE, Fathman CG (1992) Anti-CD4 monoclonal antibodies in therapy: creation of nonclassical tolerance in the adult. Immunol Rev 129: 105–130CrossRefGoogle Scholar
  97. 97.
    Waldmann H, Cobbold S (1993) The use of monoclonal antibodies to achieve immunological tolerance. Immunol Today 1: 247–251CrossRefGoogle Scholar
  98. 98.
    Hale G, Clark MR, Marcus R et al. (1988) Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody CAMPATH-1H. Lancet II: 1394–1396CrossRefGoogle Scholar
  99. 99.
    Pulito VL, Roberts VA, Adair JR et al. (1996) Humanization and molecular modeling of the anti-CD4 monoclonal antibody, OKT4A. J Immunol 156: 2840–2850PubMedGoogle Scholar
  100. 100.
    Brostoff SW, Mason DW (1984) Experimental allergic encephalomyelitis: successful treatment in vivo with a monoclonal antibody that recognized T helper cells. J Immunol 133: 1938–1942PubMedGoogle Scholar
  101. 101.
    Waldor MK, Sriram S, Hardy R et al. (1985) Reversal of experimental allergic encephalomyelitis with monoclonal antibody to a T cell subset marker. Science 227: 415–417PubMedCrossRefGoogle Scholar
  102. 102.
    Sedgwick JD, Mason DW (1986) The mechanism of inhibition of experimental allergic encephalomyelitis in the rat by monoclonal antibody against CD4. J Neuroimmunol 13: 217–232PubMedCrossRefGoogle Scholar
  103. 103.
    Sriram S, Roberts CA (1986) Treatment of established chronic relapsing experimental allergic encephalomyelitis with anti-L3T4 antibodies. J Immunol 136: 4464–4469PubMedGoogle Scholar
  104. 104.
    O’Neill JK, Baker D, Davison AN et al. (1993) Control of immunomediated disease of the central nervous system with monoclonal (CD4-specific) antibodies. J Neuro-immunol 45: 1–14Google Scholar
  105. 105.
    Biasi G, Facchinetti A, Monastra G et al. (1997) Protection from experimental autoimmune encephalomyelitis (EAE): non-depleting anti-CD4 mAb treatment induces peripheral T-cell tolerance to MBP in PL/J mice. J Neuroimmunol 73: 117–123PubMedCrossRefGoogle Scholar
  106. 106.
    Urban JL, Kumar V, Kono DH et al. (1988) Restricted use of TCR Vβ genes in murine auto-immune encephalomyelitis raises possibilities for antibody therapy. Cell 54: 577–592PubMedCrossRefGoogle Scholar
  107. 107.
    Zaller DM, Osman G, Kanagawa O, Hood L (1990) Prevention and treatment of murine experimental allergic encephalomyelitis with T-cell receptor Vβ-specific antibodies. J Exp Med 8: 579–621Google Scholar
  108. 108.
    Owhashi M, Heber-Katz E (1988) Protection from experimental allergic encephalomyelitis conferred by a monoclonal antibody directed against a shared idiotype on rat T-cell receptor specific for myelin basic protein. J Exp Med 168: 2153–2164PubMedCrossRefGoogle Scholar
  109. 109.
    Sriram S, Steinman L (1983) Anti-IA antibody suppresses active encephalomyelitis: treatment model for disease linked to IR genes. J Exp Med 158: 1362–1367PubMedCrossRefGoogle Scholar
  110. 110.
    Sriram S, Topham DJ, Carroll L (1987) Haplotype specific suppression of experimental allergic encephalomyelitis with anti-IA antibodies. J Immunol 139: 1485–1489PubMedGoogle Scholar
  111. 111.
    Chace JH, Cowdery JS, Field EH (1994) Effect of anti-CD4 on CD4 subsets. I. Anti-CD4 preferentially deletes resting, naive CD4 cells and spares activated CD4 cells. J Immunol 152: 405–413PubMedGoogle Scholar
  112. 112.
    Stumbles P, Mason D (1995) Activation of CD4+ T cells in the presence of a nondepleting monoclonal antibody to CD4 induces a Th2-type response in vitro. J Exp Med 182: 5–13PubMedCrossRefGoogle Scholar
  113. 113.
    Racadot E, Rumbach L, Bataillard M et al. (1993) Treatment of multiple sclerosis with anti-CD4 monoclonal antibody. A preliminary report on B-F5 in 21 patients. J Autoimmun 6: 771–786PubMedCrossRefGoogle Scholar
  114. 114.
    Lindsey JW, Hodgkinson S, Metha R et al. (1994) Repeated treatment with chimeric anti-CD4 antibody in multiple sclerosis. Ann Neurol 36: 183–189PubMedCrossRefGoogle Scholar
  115. 115.
    Llewellyn-Smith N, Lai M, Miller DH et al. (1997) Effects of anti-CD4 antibody treatment on lymphocyte subsets and stimulated tumor necrosis factor alpha production: a study of 29 multiple sclerosis patients entered into a clinical trial of cM-T412. Neurology 48: 810–816PubMedCrossRefGoogle Scholar
  116. 116.
    van Oosten BW, Lai M, Hodgkinson S et al. (1997) Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody Cm-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial. Neurology 47: 1531–1534CrossRefGoogle Scholar
  117. 117.
    Reichmann L, Clark M, Waldmann H, Winter G (1988) Reshaping human antibodies for therapy. Nature 332: 323–326CrossRefGoogle Scholar
  118. 118.
    Isaacs JD, Watts RA, Hazleman B et al. (1992) Humanized monoclonal antibody therapy for rheumatoid arthritis with an antiglobulin response. Lancet 340: 748–752PubMedCrossRefGoogle Scholar
  119. 119.
    Lookwood CM, Thiru S, Isaacs JD et al. (1993) Long-term remission of intractable systemic vasculitis with monoclonal antibody therapy. Lancet 341: 1620–1622CrossRefGoogle Scholar
  120. 120.
    Compston DAS, Coles AJ, Miller DH, Waldmann H (1998) CAMPATH-1H exposes three mechanisms underlying the natural history of multiple sclerosis in the individual patient. J Neuroimmunol 90(1): 96CrossRefGoogle Scholar
  121. 121.
    Miller SD, Vanderlugt C, Lenschow DJ et al. (1995) Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses in murine EAE. Immunity 3: 739–745PubMedCrossRefGoogle Scholar
  122. 122.
    Perrin PJ, Scott D, Quigley L et al. (1995) Role of B7: CD28/CTLA-4 in the induction of chronic relapsing experimental allergic encephalomyelitis. J Immunol 154: 1481–1490PubMedGoogle Scholar
  123. 123.
    Khoury SJ, Akalin SJ, Cannon C et al. (1995) CD28-B7 costimulatory blockade by CTLA4-Ig prevents actively induced experimental autoimmune encephalomyelitis and inhibits Th1 but spares Th2 cytokines in the central nervous system. J Immunol 155: 4521–4524PubMedGoogle Scholar
  124. 124.
    Duchosal MA, Rothermel AL, McConahey et al. (1996) In vivo immunosuppression by targeting a novel protease receptor. Nature 380: 352–356PubMedCrossRefGoogle Scholar
  125. 125.
    Biasi G, Facchinetti A, Panozzo M et al. (1991) Moloney murine leukemia virus tolerance in anti-CD4 monoclonal antibody-treated adult mice. J Immunol 147: 2284–2289PubMedGoogle Scholar
  126. 126.
    Facchinetti A, Panozzo M, Pertile P et al. (1992) In vivo and in vitro death of mature T cells induced by separate signals to CD4 and αβTCR. Immunobiology 185: 380–389PubMedCrossRefGoogle Scholar
  127. 127.
    Hogg N, Berlin C (1995) Structure and function of adhesion receptors in leukocyte trafficking. Immunol Today 16: 327–330PubMedCrossRefGoogle Scholar
  128. 128.
    Imhof BA, Dunon D (1995) Leukocyte migration and adhesion. Adv Immunol 58: 345–416PubMedCrossRefGoogle Scholar
  129. 129.
    Raine CS (1994) Multiple sclerosis: immune system adhesion molecule expression in the central nervous system. J Neuropathol Exp Neurol 53: 328–337PubMedCrossRefGoogle Scholar
  130. 130.
    Raine CS, Lee SC, Scheinberg LC et al. (1990) Adhesion molecules on endothelial cells in the central nervous system: an emerging area in the neuroimmunology of multiple sclerosis. Clin Immunol Immunopathol 57: 173–187PubMedCrossRefGoogle Scholar
  131. 131.
    Hartung H-P, Archelos JJ, Zielasek J et al. (1995) Circulating adhesion molecules and inflammatory mediators in demyelination: a review. Neurology 45(Suppl 6): S22–S32PubMedCrossRefGoogle Scholar
  132. 132.
    Yednock TA, Cannon C, Fritz LC et al. (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against α4βl integrin. Nature 356: 63–66PubMedCrossRefGoogle Scholar
  133. 133.
    Archelos JJ, Jung S, Mäurer M et al. (1993) Inhibition of experimental autoimmune encephalomyelitis by an antibody to the intercellular adhesion molecule ICAM-1. Ann Neurol 34: 145–154PubMedCrossRefGoogle Scholar
  134. 134.
    Kent SJ, Karlik SJ, Cannon C et al. (1995) A monoclonal antibody to α4 integrin suppresses and reverses active experimental allergic encephalomyelitis. J Neuroimmunol 58: 1–10PubMedCrossRefGoogle Scholar
  135. 135.
    Walicke PA (1998) Update on Antegren (Natalizumab) injection. Presented at the IBC’s 6th International Symposium on Multiple Sclerosis. Continued Breakthroughs and Clinical Trials. Washington DC, 10–11 December 1998Google Scholar
  136. 136.
    Mosmann TR, Coffman RL (1989) TH1 and TH2 cells. Different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7: 145–173PubMedCrossRefGoogle Scholar
  137. 137.
    Romagnani S (1994) Lymphokine production by human T cells in disease states. Annu Rev Immunol 12: 227–257PubMedCrossRefGoogle Scholar
  138. 138.
    Allen JE, Maizels RM (1997) Th1-Th2: reliable paradigm or dangerous dogma. Immunol Today 18: 387–392PubMedCrossRefGoogle Scholar
  139. 139.
    Romagnani S (1997) The Th1/Th2 paradigm. Immunol Today 18: 263–266PubMedCrossRefGoogle Scholar
  140. 140.
    Merrill JE, Kono DH, Clayton J et al. (1992) Inflammatory leukocytes and cytokines in the peptide-induced disease of experimental allergic encephalomyelitis in SJL and B10.PL mice. Proc Natl Acad Sci USA 89: 574–578PubMedCrossRefGoogle Scholar
  141. 141.
    Liblau RS, Singer SM, McDevitt HO (1995) Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today 16: 34–38PubMedCrossRefGoogle Scholar
  142. 142.
    Zamvil SS, Steinman L (1990) The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol 8: 579–621PubMedCrossRefGoogle Scholar
  143. 143.
    Van der Veen RC, Stohlman SA (1993) Encephalitogenic Th1 cells are inhibited by Th2 cells with related peptide specificity: relative roles of interleukin-4 (IL-4) and IL-10. J Neuroimmunol 48: 213–222PubMedCrossRefGoogle Scholar
  144. 144.
    Miller SD, Karpus WJ (1994) The immunopathogenesis and regulation of T-cell mediated demyelinating diseases. Immunol Today 15: 356–361PubMedCrossRefGoogle Scholar
  145. 145.
    Nicholson LB, Greer JM, Sobel RA et al. (1995) An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity 3: 397–405PubMedCrossRefGoogle Scholar
  146. 146.
    Chen Y, Kuchroo VK, Inobe J et al. (1994) Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265: 1237–1240PubMedCrossRefGoogle Scholar
  147. 147.
    Olsson T (1995) Cytokine-producing cells in experimental autoimmune encephalomyelitis and multiple sclerosis. Neurology 45 (Suppl 6): S11–S15PubMedCrossRefGoogle Scholar
  148. 148.
    Abreu SL (1995) Interferon in experimental autoimmune encephalomyelitis (EAE): Effects of exogeneous interferon on the antigen-enhanced adoptive transfer of EAE. Int Arch Allergy Appl Immunol 76: 302–307CrossRefGoogle Scholar
  149. 149.
    Brod SA, Scott M, Burns DK, Phillips JT (1995) Modification of acute experimental autoimmune encephalomyelitis in the Lewis rat by oral administration of type I interferons. J Interfer Cytokine Res 15: 115–122CrossRefGoogle Scholar
  150. 150.
    Brod SA, Khan M (1996) Oral administration of interferon-α is superior to subcutaneous administration of interferon-α in the suppression of chronic relapsing experimental autoimmune encephalomyelitis. J Autoimmun 9: 11–20PubMedCrossRefGoogle Scholar
  151. 151.
    Inobe JI, Chen Y, Weiner HL (1996) In vivo administration of IL-4 induces TGF-β-producing cells and protects animals from experimental autoimmune encephalomyelitis. Ann N Y Acad Sci 778: 390–392PubMedCrossRefGoogle Scholar
  152. 152.
    Kuruvilla AP, Shah R, Hochwald GM et al. (1991) Protective effect of transforming growth factor beta 1 on experimental autoimmune diseases in mice. Proc Natl Acad Sci USA 88: 2918–2921PubMedCrossRefGoogle Scholar
  153. 153.
    Johns LD, Flanders KC, Ranges GE, Sriram S (1991) Successful treatment of experimental allergic encephalomyelitis with transforming growth factor β1. J Immunol 147: 1792–1796PubMedGoogle Scholar
  154. 154.
    Racke MK, Dhib-Jalbut S, Cannella B et al. (1991) Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-β1. J Immunol 146: 3012–3017PubMedGoogle Scholar
  155. 155.
    Stevens DB, Gould KE, Swanborg RH (1994) Transforming growth factor βl inhibits tumor necrosis factor-α/lymphotoxin production and adoptive transfer of disease by effector cells of autoimmune encephalomyelitis. J Neuroimmunol 51: 77–83PubMedCrossRefGoogle Scholar
  156. 156.
    Yu M, Nishiyama A, Trapp BD, Tuohy VK (1996) Interferon-β inhibits progression of relapsing-remitting experimental autoimmune encephalomyelitis. J Neuroimmunol 64: 91–100PubMedCrossRefGoogle Scholar
  157. 157.
    Röcken M, Racke M, Shevach EM (1996) IL-4-induced immune deviation as antigen-specific therapy for inflammatory autoimmune disease. Immunol Today 17: 225–231PubMedCrossRefGoogle Scholar
  158. 158.
    Racke MK, Bonomo A, Scott DE et al. (1994) Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J Exp Med 180: 1961–1966PubMedCrossRefGoogle Scholar
  159. 159.
    Lafaille JJ, Vandet Keere F, Hsu AL et al. (1997) Myelin basic protein-specific T helper α(Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease. J Exp Med 186: 307–312PubMedCrossRefGoogle Scholar
  160. 160.
    IFNB Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43: 655–661CrossRefGoogle Scholar
  161. 161.
    IFNB Multiple Sclerosis Study Group (1995) Interferon beta-1b in the treatment of multiple sclerosis. Final outcome of the randomized controlled trial. Neurology 45: 1277–1285CrossRefGoogle Scholar
  162. 162.
    Jacobs LD, Cookfair DL, Rudick RA et al. (1996) Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Ann Neurol 39: 285–294PubMedCrossRefGoogle Scholar
  163. 163.
    Rep MHG, Hintzen RQ, Polman CH, van Lier RAW (1996) Recombinant interferon-blocks proliferation but enhances interleukin-10 secretion by activated human T cells. J Neuroimmunol 67: 111–118PubMedCrossRefGoogle Scholar
  164. 164.
    Rudick RA, Ransohoff RM, Peppler R et al. (1996) Interferon beta induces interleukin-10 expression: relevance to multiple sclerosis. Ann Neurol 40: 618–627PubMedCrossRefGoogle Scholar
  165. 165.
    Noronha A, Toscas A, Jensen MA (1993) Interferon β decreases T cell activation and interferon γ production in multiple sclerosis. J Neuroimmunol 46: 145–154PubMedCrossRefGoogle Scholar
  166. 166.
    McRae BL, Picker LJ, van Seventer GA (1997) Human recombinant interferon-β influences T helper subset differentiation by regulating cytokine secretion pattern and expression of homing receptors. Eur J Immunol 27: 2650–2656PubMedCrossRefGoogle Scholar
  167. 167.
    Cannella B, Raine CS (1995) The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 37: 424–435PubMedCrossRefGoogle Scholar
  168. 168.
    Selmaj K, Raine CS, Cannella B, Brosnan CF (1991) Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest 87: 949–954PubMedCrossRefGoogle Scholar
  169. 169.
    Robbins DS, Shirazi Y, Drysdale BE et al. (1987) Production of cytotoxic factor for oligodendrocytes by stimulated astrocytes. J Immunol 139: 2593–2600PubMedGoogle Scholar
  170. 170.
    Selmaj K, Raine CS (1988) Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol 23: 339–346PubMedCrossRefGoogle Scholar
  171. 171.
    Rieckmann P, Albrecht M, Kitze B et al. (1994) Cytokine mRNA levels in mononuclear blood cells from patients with multiple sclerosis. Neurology 44: 1523–1526PubMedCrossRefGoogle Scholar
  172. 172.
    Rieckmann P, Albrecht M, Kitze B et al. (1995) Tumor necrosis factor-alpha messenger RNA expression in patients with relapsing-remitting multiple sclerosis is associated with disease activity. Ann Neurol 37: 82–88PubMedCrossRefGoogle Scholar
  173. 173.
    Kuroda Y, Shimamoto Y (1991) Human tumor necrosis factor-alpha augments experimental allergic encephalomyelitis in rats. J Neuroimmunol 34: 159–164PubMedCrossRefGoogle Scholar
  174. 174.
    Derkx B, Taminiau J, Radema S et al. (1994) Tumor necrosis factor antibody treatment in Crohn’s disease. Lancet 342: 173–174CrossRefGoogle Scholar
  175. 175.
    Van Dullemen HM, Van Deventer SJH, Hommes DW et al. (1995) Treatment of Crohn’s disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology 109: 129–135PubMedCrossRefGoogle Scholar
  176. 176.
    Elliott MJ, Maini RN, Feldmann M et al. (1994) Randomised double-blind comparison of chimeric monoclonal antibody to tumor necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 344: 1105–1110PubMedCrossRefGoogle Scholar
  177. 177.
    Elliott MJ, Maini RN, Feldmann M et al. (1994) Repeated therapy with monoclonal antibody to tumor necrosis factor alpha (cA2) in patients with rheumatoid arthritis. Lancet 334: 1125–1127CrossRefGoogle Scholar
  178. 178.
    van Oosten BW, Barkhof F, Truyen L et al. (1996) Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47: 1531–1534PubMedCrossRefGoogle Scholar
  179. 179.
    Liu J, Marino MW, Wong G et al. (1998) TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nat Med 4: 78–83PubMedCrossRefGoogle Scholar
  180. 180.
    Khoruts A, Miller SD, Jenkins MK (1995) Neuroantigen-specific Th2 cells are inefficient suppressors of experimental autoimmune encephalomyelitis induced by effector Th1 cells. J Immunol 155: 5011–5017PubMedGoogle Scholar
  181. 181.
    McFarland HF (1996) Complexities in the treatment of autoimmune disease. Science 274: 2054–2057CrossRefGoogle Scholar
  182. 182.
    Genain CP, Abel K, Belmar N et al. (1996) Late complication of immune deviation therapy in a nonhuman primate. Science 274: 2054–2057PubMedCrossRefGoogle Scholar
  183. 183.
    Hermens WTJMC, Verhaagen J (1998) Viral vectors, tools for gene transfer in the nervous system. Progr Neurobiol 55: 399–432CrossRefGoogle Scholar
  184. 184.
    Shaw MK, Lorens JB, Dhawan A et al. (1997) Local delivery of interleukin 4 by retro-virus-transduced T lymphocytes ameliorates experimental autoimmune encephalomyelitis. J Exp Med 185: 1711–1714PubMedCrossRefGoogle Scholar
  185. 185.
    Martino G, Furlan R, Galbiati F, et al. (1998) A gene therapy approach to treat demyelinating disease using nonreplicative herpetic vectors engineered to produce cytokines. Mult Scler 4: 222–227PubMedGoogle Scholar
  186. 186.
    Furlan R, Poliani PL, Galbiati F, et al. (1998) Central nervous system delivery of interleukin-4 by a nonreplicative herpes simplex type 1 viral vector ameliorates autoimmune demyelination. Hum Gene Ther 9: 2605–2617PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • P. Perini
    • 1
  • P. Gallo
    • 1
  1. 1.Department of Neurological and Psychiatrical Sciences, Second Neurological Clinic, School of Medicine, Geriatric HospitalUniversity of PaduaPaduaItaly

Personalised recommendations