Skip to main content

Magnetic Resonance and Blood-Brain Barrier Dysfunction in Multiple Sclerosis

  • Chapter
  • 86 Accesses

Part of the book series: Topics in Neuroscience ((TOPNEURO))

Abstract

Breakdown of the blood-brain barrier (BBB) is an early event in the development of multiple sclerosis (MS) lesions and it is often associated with transvascular inflammatory cell infiltration of the central nervous system (CNS) parenchyma [1]. Because of the frequent association between disruption of the BBB and perivascular lymphocytic infiltration, it has been proposed that BBB damage occurs during the migration of activated T cells into the CNS with the subsequent recognition of antigens and activation of a cascade of cytokine release [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McDonald WI, Miller DH, Barnes D (1992) The pathological evolution of multiple sclerosis. Neuropathol Appl Neurobiol 18: 319–334

    Article  PubMed  CAS  Google Scholar 

  2. Hawkins CP, Mackenzie F, Tofts P et al. (1991) Patterns of blood brain barrier breakdown in inflammatory demyelination. Brain 114: 801–810

    Article  PubMed  Google Scholar 

  3. Grossman RI, Gonzalez-Scarano F, Atlas SW et al. (1986) Multiple sclerosis: Gadolinium enhancement in MR imaging. Radiology 161: 721–725

    PubMed  CAS  Google Scholar 

  4. McFarland HF, Frank JA, Albert PS et al. (1992) Using gadolinium-enhanced magnetic resonance imaging to monitor disease activity in multiple sclerosis. Ann Neurol 32: 758–766

    Article  PubMed  CAS  Google Scholar 

  5. Miller DH, Barkhof F, Nauta JJP (1993) Gadolinium enhancement increased the sensitivity of MRI in detecting disease activity in MS. Brain 116:1077–1094

    Article  PubMed  Google Scholar 

  6. Kermode AG, Tofts P, Thompson AJ et al. (1990) Heterogeneity of blood-barrier changes in multiple sclerosis: an MRI study with gadolinium-DTPA enhancement. Neurology 40: 229–235

    Article  PubMed  CAS  Google Scholar 

  7. Filippi M, Miller DH (1996) MRI in the differential diagnosis and monitoring the treatment of multiple sclerosis Curr Opin Neurol 9: 76–186

    Article  Google Scholar 

  8. Filippi M, Rocca MA, Rizzo G et al. (1998) Magnetization transfer ratios in multiple sclerosis lesions enhancing after different dose of gadolinium. Neurology 50:1289–1293

    Article  PubMed  CAS  Google Scholar 

  9. Filippi M, Rocca MA, Martino G et al. (1998) Magnetization transfer changes in the NAWM precede the appearance of enhancing lesions in patient with multiple sclerosis. Ann Neurol 43:809–814

    Article  PubMed  CAS  Google Scholar 

  10. Davie CA, Hawkins CP, Barker GJ et al. (1994) Serial proton magnetic spectroscopy in acute multiple sclerosis lesions. Brain 117: 49–54

    Article  PubMed  Google Scholar 

  11. Tievsky AL, Ptak T, Wu O et al. (1997) Evaluation of MS lesions with full tensor diffusion weighted imaging and anisotropy mapping. In: Proceedings of the International Society for Magnetic Resonance in Medicine 1: 666 (abstract)

    Google Scholar 

  12. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. I. Fundamental concepts. Magn Reson Med 17: 357–367

    Article  PubMed  CAS  Google Scholar 

  13. Brown WJ (1978) The capillaries in acute and subacute multiple sclerosis plaques: a morphometric analysis. Neurology 28: 89–92

    Article  Google Scholar 

  14. Bradbury M (1979) The concept of blood brain barrier. John Wiley, Chichester, pp 351–382

    Google Scholar 

  15. Hawkins CP, Munro PMG, Mackenzie F et al. (1990) Duration and selectivity of blood brain barrier breakdown in chronic relapsing experimental allergic encephalomyelitis studied by gadolinium-DTPA and protein markers. Brain 113: 365–378

    Article  PubMed  Google Scholar 

  16. Katz D, Taubenberger JK, Raine CS et al. (1990) Gadolinium-enhancing lesions on magnetic resonance imaging: Neuropathological findings. Ann Neurol 28: 243

    Article  Google Scholar 

  17. Nesbit GM, Forbes GS, Scheithauer BW et al. (1991) Multiple sclerosis: histopathological and MR and/or CT correlation in 37 cases at biopsy and 3 cases at autopsy. Radiology 180: 467–474

    PubMed  CAS  Google Scholar 

  18. Lassman H (1983) Comparative neuropathology of chronic experimental allergic encephalomyelitis and multiple sclerosis. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  19. Lusmden CE (1970) The neuropathology of multiple sclerosis. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology. North-Holland, Amsterdam, pp 217–309

    Google Scholar 

  20. Dousset V, Brochet B, Vital A et al. (1995) Lysolecithin-induced demyelination in primates: preliminary in vivo study with MR and magnetization transfer. AJNR Am J Neuroradiol 16: 225–231

    PubMed  CAS  Google Scholar 

  21. Seeldrayers PA, Syha J, Morrissey SP et al. (1993) Magnetic resonance imaging investigation of blood-brain barrier damage in adoptive transfer experimental autoimmune encephalomyelitis. J Neuroimmunol 46:199–206

    Article  PubMed  CAS  Google Scholar 

  22. Namer IJ, Steibel J, Piddlesen SJ et al. (1994) Magnetic resonance imaging of antibody-mediated demyelinating experimental allergic encephalomyelitis. J Neuroimmunol 54: 41–50

    Article  PubMed  CAS  Google Scholar 

  23. Morrissey SP, Stodal H, Zettl U et al. (1996) In vivo MRI and its histological correlates in acute adoptive transfer experimental allergic encephalomyelitis. Quantification of inflammation and oedema. Brain 119: 239–248

    Article  PubMed  Google Scholar 

  24. Rosemberg GA, Dencoff JE, Correa N et al. (1996) Effects of steroids on CSF matrix metalloproteinase in multiple sclerosis: relation to blood-brain barrier injury. Neurology 46:1626–1632

    Article  Google Scholar 

  25. Barkhof F, Hommes OR, Scheltens P, Valk J (1991) Quantitative MRI changes in gadolinium-DTPA enhancement after high-dose intravenous methylprednisolone in multiple sclerosis. Neurology 41:1219–1222

    Article  PubMed  CAS  Google Scholar 

  26. Burnham JA, Wright RR, Dreisbach J et al. (1991) The effect of high-dose steroids on MRI gadolinium enhancement in acute demyelinating lesions. Neurology 41: 1349–1354

    Article  PubMed  CAS  Google Scholar 

  27. Miller DH, Rudge P, Johnson J et al. (1988) Serial gadolinium-enhanced magnetic resonance imaging in multiple sclerosis. Brain 111: 927–939

    Article  PubMed  Google Scholar 

  28. Thompson AJ, Kermode AG, MacManus DG et al. (1990) Patterns of disease activity in multiple sclerosis: clinical and magnetic resonance imaging study. Br Med J 300: 631–634

    Article  CAS  Google Scholar 

  29. Harris JO, Frank JA, Patronas N et al. (1991) Serial gadolinium-enhanced magnetic resonance imaging scans in patients with early, relapsing-remitting multiple sclerosis: implications for clinical trials and natural history. Ann Neurol 29: 548–555

    Article  PubMed  CAS  Google Scholar 

  30. Lai M, Hodgson T, Gawne-Cain M et al. (1996) A preliminary study into the sensitivity of disease activity detection by serial weekly magnetic resonance imaging in multiple sclerosis. J Neurol Neurosurg Psychiatry 60: 339–341

    Article  PubMed  CAS  Google Scholar 

  31. Tortorella C, Rocca MA, Codella C et al. (1998) Disease activity in multiple sclerosis studied with weekly triple dose magnetic resonance imaging. Mult Scler 4: 303 (abstract)

    Google Scholar 

  32. Prineas JW, Connel F (1978) The fine structure of chronically active multiple sclerosis plaques. Neurology 28(Suppl): 68–75

    Article  PubMed  CAS  Google Scholar 

  33. Bruck W, Bitsch A, Kolenda H et al. (1997) Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42: 783–793

    Article  PubMed  CAS  Google Scholar 

  34. van Waesberghe JHTM, van Walderveen MAA, Castelijns JA et al. (1998) Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetisation transfer MR. AJNR Am J Neuroradiol 19: 675–683

    PubMed  Google Scholar 

  35. Barnes D, Munro PMG, Youl BD et al. (1991) The longstanding MS lesion. A quantitative MRI and electron microscopy study. Brain 114: 1271–1280

    Article  PubMed  Google Scholar 

  36. Filippi M, Yousry T, Campi A et al. (1996) Comparison of triple dose versus standard dose gadolinium-DTPA for detection of MRI enhancing lesions in patients with MS. Neurology 46: 379–384

    Article  PubMed  CAS  Google Scholar 

  37. Filippi M, Rovaris M, Capra R et al. (1998) A multi-centre longitudinal study comparing the sensitivity of monthly MRI after standard and triple dose gadolinium-DTPA for monitoring disease activity in multiple sclerosis: implications for clinical trials. Brain 121: 2011–2020

    Article  PubMed  Google Scholar 

  38. Prineas JW, Barnard RO, Kwon EE et al. (1993) Multiple sclerosis: remyelination of nascent lesions. Ann Neurol 33: 137–151

    Article  PubMed  CAS  Google Scholar 

  39. Rovaris M, Mastronardo G, Gasperini C et al. (1998) MRI evolution of new MS lesions enhancing after different doses of gadolinium. Acta Neurol Scand 98: 90–93

    Article  PubMed  CAS  Google Scholar 

  40. Tanttu JI, Sepponem RE, Lipton MJ et al. (1992) Synergistic enhancement of MRI with Gd-DTPA and magnetization transfer. J Comput Assist Tomogr 16:19–24

    Article  PubMed  CAS  Google Scholar 

  41. Silver NC, Good CD, Barker GJ et al. (1997) Sensitivity of contrast enhanced MRI in multiple sclerosis: effects of gadolinium dose, magnetisation transfer contrast and delayed imaging. Brain 120: 1149–1161

    Article  PubMed  Google Scholar 

  42. Gasperini C, Bastianello S, Pozzilli C et al. (1997) A multicentre study comparing the sensitivity of T1-weighted images with and without magnetization transfer after the injection of standard and triple dose of gadolinium in detecting enhancing lesions in MS. J Neurol 244(Suppl 3): S24 (abstract)

    Google Scholar 

  43. Campi A, Filippi M, Comi G et al. (1996) Magnetization transfer ratios of enhancing and non-enhancing lesions in multiple sclerosis. Neuroradiology 38: 115–119

    Article  PubMed  CAS  Google Scholar 

  44. Petrella JR, Grossman RI, McGowan JC et al. (1996) Multiple sclerosis lesions: relationship between MR enhancement pattern and magnetization transfer effect. AJNR Am J Neuroradiology 17: 1041–1049

    CAS  Google Scholar 

  45. Hiehle JF, Grossman RI, Ramer NK et al. (1995) Magnetization transfer effect in MR-detected multiple sclerosis lesions: comparison with gadolinium-enhanced spin-echo images and non-enhanced T1-weighted images. AJNR Am J Neuroradiol 16: 69–77

    PubMed  Google Scholar 

  46. Filippi M, Rocca MA, Comi G (1998) Magnetization tranfer ratios of multiple sclerosis lesions with variable durations of enhancement. J Neurol Sci 159:162–165

    Article  PubMed  CAS  Google Scholar 

  47. Dousset V, Brochet B, Gayou A et al. (1995) Magnetization transfer profile of demyelinating CNS lesions. In: Proceedings of the Society for Magnetic Resonance in Medicine 1: 114 (abstract)

    Google Scholar 

  48. Alonso J, Rovira A, Cucurella MG et al. (1997) Serial magnetization transfer imaging in multiple sclerosis lesions. In: Proceedings of the International Society for Magnetic Resonance in Medicine 1: 639 (abstract)

    Google Scholar 

  49. Goodkin DE, Rooney W, Sloan R et al. (1998) PD, T1, Gadolinium (Gd+) intensities, T2, and MTRs are chronically diffusely abnormal in MS brain and on monthly MRI scans are related to the appearance of new Gd+ lesions in NAWM. Neurology 50 (Suppl 4): 191 (abstract)

    Google Scholar 

  50. Pike GB, De Stefano N, Narayana S et al. (1998) A longitudinal study of magnetization transfer in multiple sclerosis. In: Proceedings of the International Society for Magnetic Resonance in Medicine 1: 122 (abstract)

    Google Scholar 

  51. Allen IV, McKeown SR (1979) A histological, histochemical and biochemical study of the macroscopically normal white matter in multiple sclerosis. J Neuurol Sci 41: 81–91

    Article  CAS  Google Scholar 

  52. McKeown SR, Allen IV(1978) The cellular origin of lysosomal enzymes in the plaque in multiple sclerosis: a combined histological and biochemical study. Neuropathol Appl Neurobiol 4: 471–482

    Google Scholar 

  53. Lexa FJ, Grossman RI, Rosenquist AC (1994) MR of wallerian degeneration in the feline visual system: characterization by magnetization transfer rate with histopathological correlation. AJNR Am J Neuroradiology 15: 201–212

    CAS  Google Scholar 

  54. Dousset V, Brochet B, Vital A et al. (1994) MR imaging including diffusion and magnetization transer in chronic relapsing experimental encephalomyelitis: correlation with immunological and pathological data. Proc Soc Magn Reson 1: 483 (abstract)

    Google Scholar 

  55. Thorpe JW, Barker GJ, Jones SJ et al. (1995) Quantitative MRI in optic neuritis: correlation with clinical indings and electrophysiology. J Neurol Neurosurg Psychiatry 59: 487–492

    Article  PubMed  CAS  Google Scholar 

  56. Cambi F, Lees MB, Williams RM et al. (1983) Chronic experimental encephalomyelitis produced by bovine proteolipid apoprotein: immunological studies in rabbits. Ann Neurol 13: 303–308

    Article  PubMed  CAS  Google Scholar 

  57. Grossman RI, Lenkinski RE, Ramer KN et al. (1992) MR proton spectroscopy in multiple sclerosis. AJNR Am J Neuroradiol 13: 1535–1543

    PubMed  CAS  Google Scholar 

  58. Narayana PA, Wolinsky JS, Jackson EF, McCarthy M (1992) Proton MR spectroscopy of gadolinium-enhanced multiple sclerosis plaques. J Magn Reson Imaging 2: 263–270

    Article  PubMed  CAS  Google Scholar 

  59. Le Bihan D (1988) Separation of diffusion and perfusion in intravoxel incoherent motion (IVIM) MR imaging. Radiology 168: 497–505

    PubMed  Google Scholar 

  60. Gass A, Gaa J, Schreiber W et al. (1997) Echo planar diffusion weighted magnetic resonance imaging in patients with active multiple sclerosis. In: Proceedings of the International Society for Magnetic Resonance in Medicine 1: 658 (abstract)

    Google Scholar 

  61. Horsfield MA, Lai M, Webb SL et al. (1996) Apparent diffusion coefficients in benign and secondary progressive multiple sclerosis by nuclear magnetic resonance. Magn Reson Med 36: 393–400

    Article  PubMed  CAS  Google Scholar 

  62. Yeh TC, Zhang W, Ildstad ST, Ho C (1995) In vivo dynamic MRI tracking of rat T-cells labelled with superparamagnetic iron-oxide particles. Magn Reson Med 33: 200–208

    Article  PubMed  CAS  Google Scholar 

  63. Schoepf U, Marecos EM, Melder EJ et al. (1998) Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. Biotechniques 24: 642–651

    PubMed  CAS  Google Scholar 

  64. Xu S, Jordan EK, Brocke ES et al. (1998) Study of relapsing remitting experimental allergic encephalomyelitis SJL mouse model using MION-46L enhanced in vivo MRI: early histopathological correlation. J Neuroscience Res 52: 549–558

    Article  CAS  Google Scholar 

  65. Dingley AJ, Veale MF, King NJ, King GF (1994) Two-dimensional 1H NMR studies of membrane changes during the activation of primary T lymphocytes. Immunomethods 4: 127–138

    Article  PubMed  CAS  Google Scholar 

  66. Thompson AJ, Miller DH, Youl BD et al. (1992) Serial gadolinium-enhanced MRI in relapsing/remitting multiple sclerosis of varying disease duration. Neurology 42: 60–63

    Article  PubMed  CAS  Google Scholar 

  67. Thorpe JW, Kidd D, Moseley IF et al. (1996) Serial gadolinium-enhanced MRI of the brain and spinal cord in early relapsing-remitting multiple sclerosis. Neurology 46: 373–378

    Article  PubMed  CAS  Google Scholar 

  68. Barkhof F, Scheltens P, Frequin STMF et al. (1992) Relapsing-remitting multiple sclerosis: Sequential enhanced MR imaging vs clinical findings in determining disease activity. AJR Am J Roentgenol 159: 1041–1047

    PubMed  CAS  Google Scholar 

  69. Thompson AJ, Kermode AG, Wicks D et al. (1991) Major differences in the dynamics of primary and secondary progressive multiple sclerosis. Ann Neurol 29: 53–62

    Article  PubMed  CAS  Google Scholar 

  70. Revesz T, Kidd D, Thompson AJ et al. (1994) A comparison of the pathology of primary and secondary progressive multiple sclerosis. Brain 117: 759–765

    Article  PubMed  Google Scholar 

  71. Filippi M, Rossi P, Colombo B et al. (1997) Serial contrast-enhanced MR in patients with multiple sclerosis and varying levels of disability. AJNR Am J Neuroradiol 18: 1549–1556

    PubMed  CAS  Google Scholar 

  72. Filippi M, Rocca MA, Horsfield MA, Comi G (1998) A one year study of new lesions in multiple sclerosis using monthly gadolinium enhanced MRI: correlations with changes of T2 and magnetization transfer lesion loads. J Neurol Sci 158: 203–208

    Article  PubMed  CAS  Google Scholar 

  73. Koudriavtseva T, Thompson AJ, Fiorelli M et al. (1997) Gadolinium enhanced MRI disease activity in relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 62: 285–287

    Article  PubMed  CAS  Google Scholar 

  74. Smith ME, Stone LA, Albert PS et al. (1993) Clinical worsening in multiple sclerosis is associated with increased frequency and area of gadopentetate dimeglumine-enhancing magnetic resonance imaging lesions. Ann Neurol 33: 480–489

    Article  PubMed  CAS  Google Scholar 

  75. Molyneux PD, Filippi M, Barkhof F et al. (1998) Correlations between monthly enhanced MRI lesion rate and changes in T2 lesion volume in multiple sclerosis. Ann Neurol 43: 332–339

    Article  PubMed  CAS  Google Scholar 

  76. Stone LA, Smith E, Albert PS et al. (1995) Blood-brain barrier disruption on contrast-enhanced MRI in patients with mild relapsing-remitting multiple sclerosis: relationship to course, gender and age. Neurology 45:1122–1126

    Article  PubMed  CAS  Google Scholar 

  77. Losseff N, Kingsley D, McDonald WI et al. (1996) Clinical and magnetic resonance imaging predictors in primary and secondary progressive MS. Mult Scler 1: 218–222

    PubMed  CAS  Google Scholar 

  78. Gasperini C, Pozzilli C, Bastianello S et al. (1997) The influence of clinical relapses and steroid therapy on the development of Gd-enhancing lesions: a longitudinal MRI study in relapsing-remitting patients. Acta Neurol Scand 95: 201–207

    Article  PubMed  CAS  Google Scholar 

  79. Miller DH, Thompson AJ, Morrissey SP et al. (1992) High dose steroids in acute relapses of multiple sclerosis: MRI evidence for a possible mechanism of therapeutic effect. J Neurol Neurosurg Psychiatry 55: 450–453

    Article  PubMed  CAS  Google Scholar 

  80. Truyen L, Barkhof F, Tas M et al. (1997) Specific power calculations for magnetic resonance imaging (MRI) in monitoring active relapsing-remitting multiple sclerosis (MS): implications for phase II therapeutic trials. Mult Scler 2: 283–290

    PubMed  CAS  Google Scholar 

  81. Nauta JJP, Thompson AJ, Barkhof F, Miller DH (1994) Magnetic resonance imaging in monitoring the treatment of multiple sclerosis patients: statistical power of parallel-groups and crossover designs. J Neurol Sci 122: 6–14

    Article  PubMed  CAS  Google Scholar 

  82. Sormani MP, Molyneux PD, Gasperini C et al. (1999) Statistical power of MRI-monitored trials in multiple sclerosis: new data and comparison with previous results. J Neurol Neurosurg Psychiatry (in press)

    Google Scholar 

  83. Tubridy N, Ader HJ, Barkhof F et al. (1998) Exploratory treatement trials in multiple sclerosis using MRI: sample size calculations for relapsing remitting and secondary progressive subgroups using placebo controlled parallel groups. J Neurol Neurosurg Psychiatry 64: 50–55

    Article  PubMed  CAS  Google Scholar 

  84. Jacobs DL, Cookfair DL, Rudick RA et al. (1996) Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Ann Neurol 39: 285–294

    Article  PubMed  CAS  Google Scholar 

  85. Pozzilli C, Bastianello S, Koudriavtseva T et al. (1996) Magnetic resonance imaging changes with recombinant human interferon beta-1a: a short term study in relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 61: 251–258

    Article  PubMed  CAS  Google Scholar 

  86. Simon JH, Jacobs LD, Campion M et al. (1998) Magnetic resonance studies of intramuscular interferon beta-1a for relapsing multiple sclerosis. Ann Neurol 43: 79–87

    Article  PubMed  CAS  Google Scholar 

  87. Calabresi P, Stone LA, Bash CN et al. (1997) Interferon beta results in immediate reduction of contrast-enhanced MRI lesions in multiple sclerosis patients followed by weekly MRI. Neurology 48: 1446–1448

    Article  PubMed  CAS  Google Scholar 

  88. Paty DW, Li DKB, UBC MS/MRI Study Group, IFNB Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43: 662–667

    Article  Google Scholar 

  89. Stone LA, Frank JA, Albert PS et al. (1995) The effect of interferon-beta on blood-brain barrier disruptions demonstrated by contrast-enhanced magnetic resonance imaging in relapsing-remitting multiple sclerosis. Ann Neurol 37: 611–619

    Article  PubMed  CAS  Google Scholar 

  90. The IFNB Multiple Sclerosis Study Group, the University of British Columbia MS/MRI Analysis Group (1995) Interferon beta-1b in the treatment of multiple sclerosis: final outcome of the randomized controlled trial. Neurology 45: 1277–1285

    Article  Google Scholar 

  91. Mancardi GL, Sardanelli F, Parodi RC et al. (1998) Effect of copolymer-1 on serial gadolinium enhanced MRI in relapsing remitting multiple sclerosis. Neurology 50: 1127–1133

    Article  PubMed  CAS  Google Scholar 

  92. Gasperini C, Pozzilli C, Bastianello S et al. (1998) Effects of steroids on Gd-enhancing lesions before and during recombinant beta interferon 1a treatment in relapsing-remitting multiple sclerosis. Neurology 50: 403–406

    Article  PubMed  CAS  Google Scholar 

  93. Barkhof F, Filippi M, Miller DH et al. (1997) Strategies for optimizing MRI techniques aimed at monitoring disease activity in multiple sclerosis. J Neurol 244: 76–84

    Article  PubMed  CAS  Google Scholar 

  94. Filippi M, Yousry T, Rocca MA et al. (1997) Sensitivity of delayed gadolinium-enhanced MRI in multiple sclerosis. Acta Neurol Scand 95: 331–334

    Article  PubMed  CAS  Google Scholar 

  95. Filippi M, Campi A, Martinelli V et al. (1995) Comparison of triple dose versus standard dose gadolinium-DTPA for detection of MRI enhancing lesions in patients with primary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 59: 540–544

    Article  PubMed  CAS  Google Scholar 

  96. Filippi M, Capra R, Campi A et al. (1996) Triple dose of gadolinium-DTPA and delayed MRI in patients with benign multiple sclerosis. J Neurol Neurosurg Psychiatry 60: 526–530

    Article  PubMed  CAS  Google Scholar 

  97. van Waesberghe JHTM, Castelijns JA, Roser W et al. (1997) Single dose gadolinium with magnetization transfer contrast versus triple dose gadolinium in detecting enhancing multiple sclerosis lesions. AJNR Am J Neuroradiol 18:1279–1285

    PubMed  Google Scholar 

  98. Filippi M, Yousry T, Horsfield MA et al. (1996) A high-resolution three-dimensional gradient echo sequence improves the detection of disease activity in multiple sclerosis. Ann Neurol 40: 901–907

    Article  PubMed  CAS  Google Scholar 

  99. Metha RC, Pike BG, Enzmann DR (1995) Improved detection of enhancing and non-enhancing lesions of multiple sclerosis with magnetization transfer. AJNR Am J Neuroradiol 16: 1771–1778

    Google Scholar 

  100. Hartung HP, Reiners K, Archelos JJ et al. (1995) Circulating adhesion molecules and tumor necrosis factor receptor in multiple sclerosis: correlation with magnetic resonance imaging. Ann Neurol 38: 186–193

    Article  PubMed  CAS  Google Scholar 

  101. Martino G, Filippi M, Martinelli V et al. (1996) Clinical and radiological correlates of a novel T lymphocyte gamma-interferon-activated Ca2+ influx in patients with relapsing-remitting multiple sclerosis. Neurology 46: 1416–1421

    Article  PubMed  CAS  Google Scholar 

  102. Rieckmann P, Albrecht M, Kitze B et al. (1995) Tumor necrosis factor-alpha messenger RNA expression in patients with relapsing-remitting multiple sclerosis is associated with disease activity. Ann Neurol 37: 82–88

    Article  PubMed  CAS  Google Scholar 

  103. Rieckmann P, Altenhofen B, Riegel A et al. (1997) Soluble adhesion molecules (sVCAM-1 and sICAM-1) in cerebrospinal fluid and serum correlate with MRI activity in multiple sclerosis. Ann Neurol 41: 326–333

    Article  PubMed  CAS  Google Scholar 

  104. Filippi M, Rovaris M, Capra R et al. (1998) Serial standard- and triple dose to monitor the effect of interferon ß-1a on multiple sclerosis activity. Neurology 50(Suppl 4): A323 (abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia

About this chapter

Cite this chapter

Rovaris, M., Tortorella, C., Sipe, J.C., Filippi, M. (1999). Magnetic Resonance and Blood-Brain Barrier Dysfunction in Multiple Sclerosis. In: Martino, G., Adorini, L. (eds) From Basic Immunology to Immune-Mediated Demyelination. Topics in Neuroscience. Springer, Milano. https://doi.org/10.1007/978-88-470-2143-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2143-3_19

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2179-2

  • Online ISBN: 978-88-470-2143-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics