Magnetic Resonance and Blood-Brain Barrier Dysfunction in Multiple Sclerosis

  • M. Rovaris
  • C. Tortorella
  • J. C. Sipe
  • M. Filippi
Part of the Topics in Neuroscience book series (TOPNEURO)


Breakdown of the blood-brain barrier (BBB) is an early event in the development of multiple sclerosis (MS) lesions and it is often associated with transvascular inflammatory cell infiltration of the central nervous system (CNS) parenchyma [1]. Because of the frequent association between disruption of the BBB and perivascular lymphocytic infiltration, it has been proposed that BBB damage occurs during the migration of activated T cells into the CNS with the subsequent recognition of antigens and activation of a cascade of cytokine release [2].


Multiple Sclerosis Magnetization Transfer Experimental Allergic Encephalomyelitis Magnetization Transfer Ratio Normal Appear White Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McDonald WI, Miller DH, Barnes D (1992) The pathological evolution of multiple sclerosis. Neuropathol Appl Neurobiol 18: 319–334PubMedCrossRefGoogle Scholar
  2. 2.
    Hawkins CP, Mackenzie F, Tofts P et al. (1991) Patterns of blood brain barrier breakdown in inflammatory demyelination. Brain 114: 801–810PubMedCrossRefGoogle Scholar
  3. 3.
    Grossman RI, Gonzalez-Scarano F, Atlas SW et al. (1986) Multiple sclerosis: Gadolinium enhancement in MR imaging. Radiology 161: 721–725PubMedGoogle Scholar
  4. 4.
    McFarland HF, Frank JA, Albert PS et al. (1992) Using gadolinium-enhanced magnetic resonance imaging to monitor disease activity in multiple sclerosis. Ann Neurol 32: 758–766PubMedCrossRefGoogle Scholar
  5. 5.
    Miller DH, Barkhof F, Nauta JJP (1993) Gadolinium enhancement increased the sensitivity of MRI in detecting disease activity in MS. Brain 116:1077–1094PubMedCrossRefGoogle Scholar
  6. 6.
    Kermode AG, Tofts P, Thompson AJ et al. (1990) Heterogeneity of blood-barrier changes in multiple sclerosis: an MRI study with gadolinium-DTPA enhancement. Neurology 40: 229–235PubMedCrossRefGoogle Scholar
  7. 7.
    Filippi M, Miller DH (1996) MRI in the differential diagnosis and monitoring the treatment of multiple sclerosis Curr Opin Neurol 9: 76–186CrossRefGoogle Scholar
  8. 8.
    Filippi M, Rocca MA, Rizzo G et al. (1998) Magnetization transfer ratios in multiple sclerosis lesions enhancing after different dose of gadolinium. Neurology 50:1289–1293PubMedCrossRefGoogle Scholar
  9. 9.
    Filippi M, Rocca MA, Martino G et al. (1998) Magnetization transfer changes in the NAWM precede the appearance of enhancing lesions in patient with multiple sclerosis. Ann Neurol 43:809–814PubMedCrossRefGoogle Scholar
  10. 10.
    Davie CA, Hawkins CP, Barker GJ et al. (1994) Serial proton magnetic spectroscopy in acute multiple sclerosis lesions. Brain 117: 49–54PubMedCrossRefGoogle Scholar
  11. 11.
    Tievsky AL, Ptak T, Wu O et al. (1997) Evaluation of MS lesions with full tensor diffusion weighted imaging and anisotropy mapping. In: Proceedings of the International Society for Magnetic Resonance in Medicine 1: 666 (abstract)Google Scholar
  12. 12.
    Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. I. Fundamental concepts. Magn Reson Med 17: 357–367PubMedCrossRefGoogle Scholar
  13. 13.
    Brown WJ (1978) The capillaries in acute and subacute multiple sclerosis plaques: a morphometric analysis. Neurology 28: 89–92CrossRefGoogle Scholar
  14. 14.
    Bradbury M (1979) The concept of blood brain barrier. John Wiley, Chichester, pp 351–382Google Scholar
  15. 15.
    Hawkins CP, Munro PMG, Mackenzie F et al. (1990) Duration and selectivity of blood brain barrier breakdown in chronic relapsing experimental allergic encephalomyelitis studied by gadolinium-DTPA and protein markers. Brain 113: 365–378PubMedCrossRefGoogle Scholar
  16. 16.
    Katz D, Taubenberger JK, Raine CS et al. (1990) Gadolinium-enhancing lesions on magnetic resonance imaging: Neuropathological findings. Ann Neurol 28: 243CrossRefGoogle Scholar
  17. 17.
    Nesbit GM, Forbes GS, Scheithauer BW et al. (1991) Multiple sclerosis: histopathological and MR and/or CT correlation in 37 cases at biopsy and 3 cases at autopsy. Radiology 180: 467–474PubMedGoogle Scholar
  18. 18.
    Lassman H (1983) Comparative neuropathology of chronic experimental allergic encephalomyelitis and multiple sclerosis. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  19. 19.
    Lusmden CE (1970) The neuropathology of multiple sclerosis. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology. North-Holland, Amsterdam, pp 217–309Google Scholar
  20. 20.
    Dousset V, Brochet B, Vital A et al. (1995) Lysolecithin-induced demyelination in primates: preliminary in vivo study with MR and magnetization transfer. AJNR Am J Neuroradiol 16: 225–231PubMedGoogle Scholar
  21. 21.
    Seeldrayers PA, Syha J, Morrissey SP et al. (1993) Magnetic resonance imaging investigation of blood-brain barrier damage in adoptive transfer experimental autoimmune encephalomyelitis. J Neuroimmunol 46:199–206PubMedCrossRefGoogle Scholar
  22. 22.
    Namer IJ, Steibel J, Piddlesen SJ et al. (1994) Magnetic resonance imaging of antibody-mediated demyelinating experimental allergic encephalomyelitis. J Neuroimmunol 54: 41–50PubMedCrossRefGoogle Scholar
  23. 23.
    Morrissey SP, Stodal H, Zettl U et al. (1996) In vivo MRI and its histological correlates in acute adoptive transfer experimental allergic encephalomyelitis. Quantification of inflammation and oedema. Brain 119: 239–248PubMedCrossRefGoogle Scholar
  24. 24.
    Rosemberg GA, Dencoff JE, Correa N et al. (1996) Effects of steroids on CSF matrix metalloproteinase in multiple sclerosis: relation to blood-brain barrier injury. Neurology 46:1626–1632CrossRefGoogle Scholar
  25. 25.
    Barkhof F, Hommes OR, Scheltens P, Valk J (1991) Quantitative MRI changes in gadolinium-DTPA enhancement after high-dose intravenous methylprednisolone in multiple sclerosis. Neurology 41:1219–1222PubMedCrossRefGoogle Scholar
  26. 26.
    Burnham JA, Wright RR, Dreisbach J et al. (1991) The effect of high-dose steroids on MRI gadolinium enhancement in acute demyelinating lesions. Neurology 41: 1349–1354PubMedCrossRefGoogle Scholar
  27. 27.
    Miller DH, Rudge P, Johnson J et al. (1988) Serial gadolinium-enhanced magnetic resonance imaging in multiple sclerosis. Brain 111: 927–939PubMedCrossRefGoogle Scholar
  28. 28.
    Thompson AJ, Kermode AG, MacManus DG et al. (1990) Patterns of disease activity in multiple sclerosis: clinical and magnetic resonance imaging study. Br Med J 300: 631–634CrossRefGoogle Scholar
  29. 29.
    Harris JO, Frank JA, Patronas N et al. (1991) Serial gadolinium-enhanced magnetic resonance imaging scans in patients with early, relapsing-remitting multiple sclerosis: implications for clinical trials and natural history. Ann Neurol 29: 548–555PubMedCrossRefGoogle Scholar
  30. 30.
    Lai M, Hodgson T, Gawne-Cain M et al. (1996) A preliminary study into the sensitivity of disease activity detection by serial weekly magnetic resonance imaging in multiple sclerosis. J Neurol Neurosurg Psychiatry 60: 339–341PubMedCrossRefGoogle Scholar
  31. 31.
    Tortorella C, Rocca MA, Codella C et al. (1998) Disease activity in multiple sclerosis studied with weekly triple dose magnetic resonance imaging. Mult Scler 4: 303 (abstract)Google Scholar
  32. 32.
    Prineas JW, Connel F (1978) The fine structure of chronically active multiple sclerosis plaques. Neurology 28(Suppl): 68–75PubMedCrossRefGoogle Scholar
  33. 33.
    Bruck W, Bitsch A, Kolenda H et al. (1997) Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42: 783–793PubMedCrossRefGoogle Scholar
  34. 34.
    van Waesberghe JHTM, van Walderveen MAA, Castelijns JA et al. (1998) Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetisation transfer MR. AJNR Am J Neuroradiol 19: 675–683PubMedGoogle Scholar
  35. 35.
    Barnes D, Munro PMG, Youl BD et al. (1991) The longstanding MS lesion. A quantitative MRI and electron microscopy study. Brain 114: 1271–1280PubMedCrossRefGoogle Scholar
  36. 36.
    Filippi M, Yousry T, Campi A et al. (1996) Comparison of triple dose versus standard dose gadolinium-DTPA for detection of MRI enhancing lesions in patients with MS. Neurology 46: 379–384PubMedCrossRefGoogle Scholar
  37. 37.
    Filippi M, Rovaris M, Capra R et al. (1998) A multi-centre longitudinal study comparing the sensitivity of monthly MRI after standard and triple dose gadolinium-DTPA for monitoring disease activity in multiple sclerosis: implications for clinical trials. Brain 121: 2011–2020PubMedCrossRefGoogle Scholar
  38. 38.
    Prineas JW, Barnard RO, Kwon EE et al. (1993) Multiple sclerosis: remyelination of nascent lesions. Ann Neurol 33: 137–151PubMedCrossRefGoogle Scholar
  39. 39.
    Rovaris M, Mastronardo G, Gasperini C et al. (1998) MRI evolution of new MS lesions enhancing after different doses of gadolinium. Acta Neurol Scand 98: 90–93PubMedCrossRefGoogle Scholar
  40. 40.
    Tanttu JI, Sepponem RE, Lipton MJ et al. (1992) Synergistic enhancement of MRI with Gd-DTPA and magnetization transfer. J Comput Assist Tomogr 16:19–24PubMedCrossRefGoogle Scholar
  41. 41.
    Silver NC, Good CD, Barker GJ et al. (1997) Sensitivity of contrast enhanced MRI in multiple sclerosis: effects of gadolinium dose, magnetisation transfer contrast and delayed imaging. Brain 120: 1149–1161PubMedCrossRefGoogle Scholar
  42. 42.
    Gasperini C, Bastianello S, Pozzilli C et al. (1997) A multicentre study comparing the sensitivity of T1-weighted images with and without magnetization transfer after the injection of standard and triple dose of gadolinium in detecting enhancing lesions in MS. J Neurol 244(Suppl 3): S24 (abstract)Google Scholar
  43. 43.
    Campi A, Filippi M, Comi G et al. (1996) Magnetization transfer ratios of enhancing and non-enhancing lesions in multiple sclerosis. Neuroradiology 38: 115–119PubMedCrossRefGoogle Scholar
  44. 44.
    Petrella JR, Grossman RI, McGowan JC et al. (1996) Multiple sclerosis lesions: relationship between MR enhancement pattern and magnetization transfer effect. AJNR Am J Neuroradiology 17: 1041–1049Google Scholar
  45. 45.
    Hiehle JF, Grossman RI, Ramer NK et al. (1995) Magnetization transfer effect in MR-detected multiple sclerosis lesions: comparison with gadolinium-enhanced spin-echo images and non-enhanced T1-weighted images. AJNR Am J Neuroradiol 16: 69–77PubMedGoogle Scholar
  46. 46.
    Filippi M, Rocca MA, Comi G (1998) Magnetization tranfer ratios of multiple sclerosis lesions with variable durations of enhancement. J Neurol Sci 159:162–165PubMedCrossRefGoogle Scholar
  47. 47.
    Dousset V, Brochet B, Gayou A et al. (1995) Magnetization transfer profile of demyelinating CNS lesions. In: Proceedings of the Society for Magnetic Resonance in Medicine 1: 114 (abstract)Google Scholar
  48. 48.
    Alonso J, Rovira A, Cucurella MG et al. (1997) Serial magnetization transfer imaging in multiple sclerosis lesions. In: Proceedings of the International Society for Magnetic Resonance in Medicine 1: 639 (abstract)Google Scholar
  49. 49.
    Goodkin DE, Rooney W, Sloan R et al. (1998) PD, T1, Gadolinium (Gd+) intensities, T2, and MTRs are chronically diffusely abnormal in MS brain and on monthly MRI scans are related to the appearance of new Gd+ lesions in NAWM. Neurology 50 (Suppl 4): 191 (abstract)Google Scholar
  50. 50.
    Pike GB, De Stefano N, Narayana S et al. (1998) A longitudinal study of magnetization transfer in multiple sclerosis. In: Proceedings of the International Society for Magnetic Resonance in Medicine 1: 122 (abstract)Google Scholar
  51. 51.
    Allen IV, McKeown SR (1979) A histological, histochemical and biochemical study of the macroscopically normal white matter in multiple sclerosis. J Neuurol Sci 41: 81–91CrossRefGoogle Scholar
  52. 52.
    McKeown SR, Allen IV(1978) The cellular origin of lysosomal enzymes in the plaque in multiple sclerosis: a combined histological and biochemical study. Neuropathol Appl Neurobiol 4: 471–482Google Scholar
  53. 53.
    Lexa FJ, Grossman RI, Rosenquist AC (1994) MR of wallerian degeneration in the feline visual system: characterization by magnetization transfer rate with histopathological correlation. AJNR Am J Neuroradiology 15: 201–212Google Scholar
  54. 54.
    Dousset V, Brochet B, Vital A et al. (1994) MR imaging including diffusion and magnetization transer in chronic relapsing experimental encephalomyelitis: correlation with immunological and pathological data. Proc Soc Magn Reson 1: 483 (abstract)Google Scholar
  55. 55.
    Thorpe JW, Barker GJ, Jones SJ et al. (1995) Quantitative MRI in optic neuritis: correlation with clinical indings and electrophysiology. J Neurol Neurosurg Psychiatry 59: 487–492PubMedCrossRefGoogle Scholar
  56. 56.
    Cambi F, Lees MB, Williams RM et al. (1983) Chronic experimental encephalomyelitis produced by bovine proteolipid apoprotein: immunological studies in rabbits. Ann Neurol 13: 303–308PubMedCrossRefGoogle Scholar
  57. 57.
    Grossman RI, Lenkinski RE, Ramer KN et al. (1992) MR proton spectroscopy in multiple sclerosis. AJNR Am J Neuroradiol 13: 1535–1543PubMedGoogle Scholar
  58. 58.
    Narayana PA, Wolinsky JS, Jackson EF, McCarthy M (1992) Proton MR spectroscopy of gadolinium-enhanced multiple sclerosis plaques. J Magn Reson Imaging 2: 263–270PubMedCrossRefGoogle Scholar
  59. 59.
    Le Bihan D (1988) Separation of diffusion and perfusion in intravoxel incoherent motion (IVIM) MR imaging. Radiology 168: 497–505PubMedGoogle Scholar
  60. 60.
    Gass A, Gaa J, Schreiber W et al. (1997) Echo planar diffusion weighted magnetic resonance imaging in patients with active multiple sclerosis. In: Proceedings of the International Society for Magnetic Resonance in Medicine 1: 658 (abstract)Google Scholar
  61. 61.
    Horsfield MA, Lai M, Webb SL et al. (1996) Apparent diffusion coefficients in benign and secondary progressive multiple sclerosis by nuclear magnetic resonance. Magn Reson Med 36: 393–400PubMedCrossRefGoogle Scholar
  62. 62.
    Yeh TC, Zhang W, Ildstad ST, Ho C (1995) In vivo dynamic MRI tracking of rat T-cells labelled with superparamagnetic iron-oxide particles. Magn Reson Med 33: 200–208PubMedCrossRefGoogle Scholar
  63. 63.
    Schoepf U, Marecos EM, Melder EJ et al. (1998) Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. Biotechniques 24: 642–651PubMedGoogle Scholar
  64. 64.
    Xu S, Jordan EK, Brocke ES et al. (1998) Study of relapsing remitting experimental allergic encephalomyelitis SJL mouse model using MION-46L enhanced in vivo MRI: early histopathological correlation. J Neuroscience Res 52: 549–558CrossRefGoogle Scholar
  65. 65.
    Dingley AJ, Veale MF, King NJ, King GF (1994) Two-dimensional 1H NMR studies of membrane changes during the activation of primary T lymphocytes. Immunomethods 4: 127–138PubMedCrossRefGoogle Scholar
  66. 66.
    Thompson AJ, Miller DH, Youl BD et al. (1992) Serial gadolinium-enhanced MRI in relapsing/remitting multiple sclerosis of varying disease duration. Neurology 42: 60–63PubMedCrossRefGoogle Scholar
  67. 67.
    Thorpe JW, Kidd D, Moseley IF et al. (1996) Serial gadolinium-enhanced MRI of the brain and spinal cord in early relapsing-remitting multiple sclerosis. Neurology 46: 373–378PubMedCrossRefGoogle Scholar
  68. 68.
    Barkhof F, Scheltens P, Frequin STMF et al. (1992) Relapsing-remitting multiple sclerosis: Sequential enhanced MR imaging vs clinical findings in determining disease activity. AJR Am J Roentgenol 159: 1041–1047PubMedGoogle Scholar
  69. 69.
    Thompson AJ, Kermode AG, Wicks D et al. (1991) Major differences in the dynamics of primary and secondary progressive multiple sclerosis. Ann Neurol 29: 53–62PubMedCrossRefGoogle Scholar
  70. 70.
    Revesz T, Kidd D, Thompson AJ et al. (1994) A comparison of the pathology of primary and secondary progressive multiple sclerosis. Brain 117: 759–765PubMedCrossRefGoogle Scholar
  71. 71.
    Filippi M, Rossi P, Colombo B et al. (1997) Serial contrast-enhanced MR in patients with multiple sclerosis and varying levels of disability. AJNR Am J Neuroradiol 18: 1549–1556PubMedGoogle Scholar
  72. 72.
    Filippi M, Rocca MA, Horsfield MA, Comi G (1998) A one year study of new lesions in multiple sclerosis using monthly gadolinium enhanced MRI: correlations with changes of T2 and magnetization transfer lesion loads. J Neurol Sci 158: 203–208PubMedCrossRefGoogle Scholar
  73. 73.
    Koudriavtseva T, Thompson AJ, Fiorelli M et al. (1997) Gadolinium enhanced MRI disease activity in relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 62: 285–287PubMedCrossRefGoogle Scholar
  74. 74.
    Smith ME, Stone LA, Albert PS et al. (1993) Clinical worsening in multiple sclerosis is associated with increased frequency and area of gadopentetate dimeglumine-enhancing magnetic resonance imaging lesions. Ann Neurol 33: 480–489PubMedCrossRefGoogle Scholar
  75. 75.
    Molyneux PD, Filippi M, Barkhof F et al. (1998) Correlations between monthly enhanced MRI lesion rate and changes in T2 lesion volume in multiple sclerosis. Ann Neurol 43: 332–339PubMedCrossRefGoogle Scholar
  76. 76.
    Stone LA, Smith E, Albert PS et al. (1995) Blood-brain barrier disruption on contrast-enhanced MRI in patients with mild relapsing-remitting multiple sclerosis: relationship to course, gender and age. Neurology 45:1122–1126PubMedCrossRefGoogle Scholar
  77. 77.
    Losseff N, Kingsley D, McDonald WI et al. (1996) Clinical and magnetic resonance imaging predictors in primary and secondary progressive MS. Mult Scler 1: 218–222PubMedGoogle Scholar
  78. 78.
    Gasperini C, Pozzilli C, Bastianello S et al. (1997) The influence of clinical relapses and steroid therapy on the development of Gd-enhancing lesions: a longitudinal MRI study in relapsing-remitting patients. Acta Neurol Scand 95: 201–207PubMedCrossRefGoogle Scholar
  79. 79.
    Miller DH, Thompson AJ, Morrissey SP et al. (1992) High dose steroids in acute relapses of multiple sclerosis: MRI evidence for a possible mechanism of therapeutic effect. J Neurol Neurosurg Psychiatry 55: 450–453PubMedCrossRefGoogle Scholar
  80. 80.
    Truyen L, Barkhof F, Tas M et al. (1997) Specific power calculations for magnetic resonance imaging (MRI) in monitoring active relapsing-remitting multiple sclerosis (MS): implications for phase II therapeutic trials. Mult Scler 2: 283–290PubMedGoogle Scholar
  81. 81.
    Nauta JJP, Thompson AJ, Barkhof F, Miller DH (1994) Magnetic resonance imaging in monitoring the treatment of multiple sclerosis patients: statistical power of parallel-groups and crossover designs. J Neurol Sci 122: 6–14PubMedCrossRefGoogle Scholar
  82. 82.
    Sormani MP, Molyneux PD, Gasperini C et al. (1999) Statistical power of MRI-monitored trials in multiple sclerosis: new data and comparison with previous results. J Neurol Neurosurg Psychiatry (in press)Google Scholar
  83. 83.
    Tubridy N, Ader HJ, Barkhof F et al. (1998) Exploratory treatement trials in multiple sclerosis using MRI: sample size calculations for relapsing remitting and secondary progressive subgroups using placebo controlled parallel groups. J Neurol Neurosurg Psychiatry 64: 50–55PubMedCrossRefGoogle Scholar
  84. 84.
    Jacobs DL, Cookfair DL, Rudick RA et al. (1996) Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Ann Neurol 39: 285–294PubMedCrossRefGoogle Scholar
  85. 85.
    Pozzilli C, Bastianello S, Koudriavtseva T et al. (1996) Magnetic resonance imaging changes with recombinant human interferon beta-1a: a short term study in relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 61: 251–258PubMedCrossRefGoogle Scholar
  86. 86.
    Simon JH, Jacobs LD, Campion M et al. (1998) Magnetic resonance studies of intramuscular interferon beta-1a for relapsing multiple sclerosis. Ann Neurol 43: 79–87PubMedCrossRefGoogle Scholar
  87. 87.
    Calabresi P, Stone LA, Bash CN et al. (1997) Interferon beta results in immediate reduction of contrast-enhanced MRI lesions in multiple sclerosis patients followed by weekly MRI. Neurology 48: 1446–1448PubMedCrossRefGoogle Scholar
  88. 88.
    Paty DW, Li DKB, UBC MS/MRI Study Group, IFNB Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43: 662–667CrossRefGoogle Scholar
  89. 89.
    Stone LA, Frank JA, Albert PS et al. (1995) The effect of interferon-beta on blood-brain barrier disruptions demonstrated by contrast-enhanced magnetic resonance imaging in relapsing-remitting multiple sclerosis. Ann Neurol 37: 611–619PubMedCrossRefGoogle Scholar
  90. 90.
    The IFNB Multiple Sclerosis Study Group, the University of British Columbia MS/MRI Analysis Group (1995) Interferon beta-1b in the treatment of multiple sclerosis: final outcome of the randomized controlled trial. Neurology 45: 1277–1285CrossRefGoogle Scholar
  91. 91.
    Mancardi GL, Sardanelli F, Parodi RC et al. (1998) Effect of copolymer-1 on serial gadolinium enhanced MRI in relapsing remitting multiple sclerosis. Neurology 50: 1127–1133PubMedCrossRefGoogle Scholar
  92. 92.
    Gasperini C, Pozzilli C, Bastianello S et al. (1998) Effects of steroids on Gd-enhancing lesions before and during recombinant beta interferon 1a treatment in relapsing-remitting multiple sclerosis. Neurology 50: 403–406PubMedCrossRefGoogle Scholar
  93. 93.
    Barkhof F, Filippi M, Miller DH et al. (1997) Strategies for optimizing MRI techniques aimed at monitoring disease activity in multiple sclerosis. J Neurol 244: 76–84PubMedCrossRefGoogle Scholar
  94. 94.
    Filippi M, Yousry T, Rocca MA et al. (1997) Sensitivity of delayed gadolinium-enhanced MRI in multiple sclerosis. Acta Neurol Scand 95: 331–334PubMedCrossRefGoogle Scholar
  95. 95.
    Filippi M, Campi A, Martinelli V et al. (1995) Comparison of triple dose versus standard dose gadolinium-DTPA for detection of MRI enhancing lesions in patients with primary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 59: 540–544PubMedCrossRefGoogle Scholar
  96. 96.
    Filippi M, Capra R, Campi A et al. (1996) Triple dose of gadolinium-DTPA and delayed MRI in patients with benign multiple sclerosis. J Neurol Neurosurg Psychiatry 60: 526–530PubMedCrossRefGoogle Scholar
  97. 97.
    van Waesberghe JHTM, Castelijns JA, Roser W et al. (1997) Single dose gadolinium with magnetization transfer contrast versus triple dose gadolinium in detecting enhancing multiple sclerosis lesions. AJNR Am J Neuroradiol 18:1279–1285PubMedGoogle Scholar
  98. 98.
    Filippi M, Yousry T, Horsfield MA et al. (1996) A high-resolution three-dimensional gradient echo sequence improves the detection of disease activity in multiple sclerosis. Ann Neurol 40: 901–907PubMedCrossRefGoogle Scholar
  99. 99.
    Metha RC, Pike BG, Enzmann DR (1995) Improved detection of enhancing and non-enhancing lesions of multiple sclerosis with magnetization transfer. AJNR Am J Neuroradiol 16: 1771–1778Google Scholar
  100. 100.
    Hartung HP, Reiners K, Archelos JJ et al. (1995) Circulating adhesion molecules and tumor necrosis factor receptor in multiple sclerosis: correlation with magnetic resonance imaging. Ann Neurol 38: 186–193PubMedCrossRefGoogle Scholar
  101. 101.
    Martino G, Filippi M, Martinelli V et al. (1996) Clinical and radiological correlates of a novel T lymphocyte gamma-interferon-activated Ca2+ influx in patients with relapsing-remitting multiple sclerosis. Neurology 46: 1416–1421PubMedCrossRefGoogle Scholar
  102. 102.
    Rieckmann P, Albrecht M, Kitze B et al. (1995) Tumor necrosis factor-alpha messenger RNA expression in patients with relapsing-remitting multiple sclerosis is associated with disease activity. Ann Neurol 37: 82–88PubMedCrossRefGoogle Scholar
  103. 103.
    Rieckmann P, Altenhofen B, Riegel A et al. (1997) Soluble adhesion molecules (sVCAM-1 and sICAM-1) in cerebrospinal fluid and serum correlate with MRI activity in multiple sclerosis. Ann Neurol 41: 326–333PubMedCrossRefGoogle Scholar
  104. 104.
    Filippi M, Rovaris M, Capra R et al. (1998) Serial standard- and triple dose to monitor the effect of interferon ß-1a on multiple sclerosis activity. Neurology 50(Suppl 4): A323 (abstract)Google Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • M. Rovaris
    • 1
  • C. Tortorella
    • 1
  • J. C. Sipe
    • 2
  • M. Filippi
    • 1
  1. 1.Neuroimaging Research Unit, Department of Neuroscience, Scientific Institute Ospedale San RaffaeleUniversity of MilanMilanItaly
  2. 2.Division of Neurology and The Scripps Research InstituteScripps ClinicLa JollaUSA

Personalised recommendations