Adhesion Molecules and the Blood-Brain Barrier in Multiple Sclerosis

  • J. J. Archelos
  • H.-P. Hartung
Part of the Topics in Neuroscience book series (TOPNEURO)


Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system (CNS) and constitutes a major cause of transient and permanent neurological disability in the adult. The etiology and pathogenesis of MS are only partially understood. On a cellular level, focal mononuclear cell infiltration with demyelination and eventual axonal loss is a crucial pathogenetic event leading to inflammation and subsequent dysfunction. Here we review evidence that adhesion molecules (AM) expressed at the blood-brain barrier (BBB) and on T cells play a central role in immune cell recruitment to the CNS. Therapeutic targeting of AM has been very successful in the corresponding animal model of experimental autoimmune encephalomyelitis and holds promise as a novel treatment strategy to combat human immune-mediated disorders of the CNS.


Multiple Sclerosis Experimental Autoimmune Encephalomyelitis Experimental Allergic Encephalomyelitis Adhesion Molecule Expression Transendothelial Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pardridge WM (1997) Drug delivery to the brain. J Cereb Blood Flow Metab 17: 713–731PubMedCrossRefGoogle Scholar
  2. 2.
    Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28: 254–260PubMedCrossRefGoogle Scholar
  3. 3.
    Archelos JJ, Hartung H-P (1997) The role of adhesion molecules in multiple sclerosis: Biology, pathogenesis and therapeutic implications. Mol Med Today 3: 310–321PubMedCrossRefGoogle Scholar
  4. 4.
    Oppenheimer-Marks N, Lipsky PE (1996) Adhesion molecules as targets for the treatment of autoimmune diseases. Clin Immunol Immunopathol 79: 203–210PubMedCrossRefGoogle Scholar
  5. 5.
    Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 76: 301–314PubMedCrossRefGoogle Scholar
  6. 6.
    Raine CS (1994) Multiple sclerosis: immune system molecule expression in the central nervous system. J Neuropathol Exp Neurol 53: 328–337PubMedCrossRefGoogle Scholar
  7. 7.
    Engelhardt B, Vestweber D, Hallmann R, Schulz M (1997) E- and P-selectin are not involved in the recruitment of inflammatory cells across the blood-brain barrier in experimental autoimmune encephalomyelitis. Blood 90: 4459–4472PubMedGoogle Scholar
  8. 8.
    Williams KC, Zhao RW, Ueno K, Hickey WF (1996) PECAM-1 (CD31) expression in the central nervous system and its role in experimental allergic encephalomyelitis in the rat. J Neurosci Res 45: 747–757PubMedCrossRefGoogle Scholar
  9. 9.
    Previtali S, Archelos JJ, Hartung H-P (1997) Modulation of the expression of integrins on glial cells during experimental autoimmune encephalomyelitis. A central role for TNF-α. Am J Pathol 151: 1425–1435PubMedGoogle Scholar
  10. 10.
    Archelos JJ, Previtali SC, Hartung H-P (1999) The role of integrins in immune-mediated diseases of the nervous system. Trends Neurosci 22: 30–38PubMedCrossRefGoogle Scholar
  11. 11.
    Dopp JM, Brenemann SM, Olschowka JA (1994) Expression of ICAM-1, VCAM-1, L-selectin, and leukosialin in the mouse central nervous system during the induction and remission stages of experimental allergic encephalomyelitis. J Neuroimmunol 54: 129–144PubMedCrossRefGoogle Scholar
  12. 12.
    Lindsey JW, Steinman L (1993) Competitive PCR quantification of CD4, CD8, ICAM-1, VCAM-1, and MHC class II mRNA in the central nervous system during development and resolution of experimental allergic encephalomyelitis. J Neuroimmunol 48: 227–234PubMedCrossRefGoogle Scholar
  13. 13.
    Cannella B, Cross AH, Raine CS (1990) Upregulation and coexpression of adhesion molecules correlate with relapsing autoimmune demyelination in the central nervous system. J Exp Med 172: 1521–1524PubMedCrossRefGoogle Scholar
  14. 14.
    Butcher E, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272: 60–66PubMedCrossRefGoogle Scholar
  15. 15.
    Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76: 301–314PubMedCrossRefGoogle Scholar
  16. 16.
    Reiss Y, Hoch G, Deutsch U, Engelhardt B (1998) T cell interaction with ICAM-1 deficient endothelium in vitro: essential role for ICAM-1 and ICAM-2 in transendothelial migration of T cells. Eur J Immunol 28: 3086–3099PubMedCrossRefGoogle Scholar
  17. 17.
    Pryce G, Male D, Campbell I, Greenwood J (1997) Factors contolling T-cell migration across rat cerebral endothelium in vitro. J Neuroimmunol 75: 84–94PubMedCrossRefGoogle Scholar
  18. 18.
    DeGrendele HC, Estess P, Siegelman MH (1997) Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science 278: 672–675PubMedCrossRefGoogle Scholar
  19. 19.
    Bevilacqua MP, Nelson RM, Mannori G, Cecconi O (1994) Endothelial-leukocyte adhesion molecules in human disease. Annu Rev Med 45: 361–378PubMedCrossRefGoogle Scholar
  20. 20.
    Archelos JJ, Hartung H-P (1999) Adhesion molecules in multiple sclerosis: A review. In: Siva A, Thompson A, Kesselring J (eds) Frontiers in multiple sclerosis II. Martin Dunitz, London (in press)Google Scholar
  21. 21.
    Karpus WJ, Lukacs NW, McRae BL et al. (1995) An important role for the chemokine macrophage inflammatory protein-1α in the pathogenesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J Immunol 155: 5003–5010PubMedGoogle Scholar
  22. 22.
    Cannella B, Cross AH, Raine CS (1993) Anti-adhesion molecule therapy in experimental autoimmune encephalomyelitis. J Neuroimmunol 46: 43–56PubMedCrossRefGoogle Scholar
  23. 23.
    Hogg N, Berlin C (1995) Structure and function of adhesion receptors in leukocyte trafficking. Immunol Today 16: 327–330PubMedCrossRefGoogle Scholar
  24. 24.
    Newman PJ (1997) The Biology of PECAM-1. J Clin Invest 99: 3–8PubMedCrossRefGoogle Scholar
  25. 25.
    Archelos JJ, Jung S, Mäurer M et al. (1993) Inhibition of experimental autoimmune encephalomyelitis by an antibody to the intercellular adhesion molecule ICAM-1, Ann Neurol 34:145–154PubMedCrossRefGoogle Scholar
  26. 26.
    Soilu-Hänninen M, Roytta M, Salmi A, Salonen R (1997) Therapy with antibody against leukocyte integrin VLA-4 (CD49d) is effective and safe in virus-facilitated experimental allergic encephalomyelits. J Neuroimmunol 72: 95–105PubMedCrossRefGoogle Scholar
  27. 27.
    Archelos JJ, Jung S, Rinner W et al. (1998) Role of leukocyte adhesion molecule L-selectin in experimental autoimmune encephalomyelitis. J Neurol Sci 159:127–134PubMedCrossRefGoogle Scholar
  28. 28.
    Seeldrayers PA, Syha J, Morrissey SP et al. (1993) Magnetic resonance imaging investigation of blood-brain barrier damage in adoptive transfer experimental autoimmune encephalomyelitis. J Neuroimmunol 46: 199–206PubMedCrossRefGoogle Scholar
  29. 29.
    Namer IJ, Steibel J, Piddlesden SJ et al. (1994) Magnetic resonance imaging of antibody-mediated demyelinating experimental allergic encephalomyelits. J Neuroimmunol 54: 41–50PubMedCrossRefGoogle Scholar
  30. 30.
    Hawkins CP, Munroe PMG, Mackenzie F et al. (1990) Duration and selectivity of blood-brain barrier breakdown in chronic relapsing experimental aller gic encephalomyelitis studied by gadolinium-DTPA and protein markers. Brain 113:365–367PubMedCrossRefGoogle Scholar
  31. 31.
    Morrissey SP, Stodal H, Zettl U et al. (1996) In vivo MRI and its histological correlates in acute adoptive transfer experimental allergic encephalomyelits. Quantification of inflammation and oedema. Brain 119: 239–248PubMedCrossRefGoogle Scholar
  32. 32.
    Sobel RA, Hinojoza JR, Maeda A, Chen M (1998) Endothelial cell integrin laminin receptor expression in multiple sclerosis lesions. Am J Pathol 153: 405–415PubMedCrossRefGoogle Scholar
  33. 33.
    Stüber A, Martin R, Stone LA et al. (1996) Expression pattern of activation and adhesion molecules on peripheral blood CD4+ T-lymphocytes in relapsing-remitting multiple sclerosis patients: a serial analysis. J Neuroimmunol 66: 147–151PubMedCrossRefGoogle Scholar
  34. 34.
    Droogan AG, Crockard AD, McMillan SA, Hawkins SA (1998) Effects of intravenous methylprednisolone therapy on leukocyte and soluble adhesion molecule expression in MS. Neurology 50: 224–229PubMedCrossRefGoogle Scholar
  35. 35.
    Soilu-Hänninen M, Salmi A, Salonen R (1996) Interferon-beta downregulates expression of VLA-4 antigen and antagonizes interferon-gamma-induced expression of HLA-DQ on peripheral blood monocytes. J Neuroimmunol 60: 99–106CrossRefGoogle Scholar
  36. 36.
    Pitzalis C, Sharrack B, Gray IA et al. (1997) Comparison of the effects of oral versus intravenous methylprednisolon regimens on peripheral blood T lymphocyte adhesion molecule expression, T cell subsets distribution and TNF alpha concentrations in multiple sclerosis. J Neuroimmunol 74: 62–68PubMedCrossRefGoogle Scholar
  37. 37.
    Svenningsson A, Hansson GK, Andersen O et al. (1993) Adhesion molecule expression on cerebrospinal fluid T lymphocytes: evidence for common recruitment mechanisms in multiple sclerosis, aseptic meningitis, and normal controls. Ann Neurol 34: 155–161PubMedCrossRefGoogle Scholar
  38. 38.
    Svenningsson A, Dotevall L, Stemme S, Andersen O (1997) Increased expression of B2–7 costimulatory molecule on cerebrospinal fluid cells of patients with multiple sclerosis and infectious central nervous system disease. J Neuroimmunol 75: 59–68PubMedCrossRefGoogle Scholar
  39. 39.
    Hartung HP, Archelos JJ, Zielasek J et al. (1995) Circulating adhesion molecules and inflammatory mediators in demyelination. Neurology 45(Suppl 6): S22–S32PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • J. J. Archelos
    • 1
  • H.-P. Hartung
    • 1
  1. 1.Department of NeurologyKarl-Franzens-UniversitätGrazAustria

Personalised recommendations