Myelination of the Central Nervous System

  • G. G. Consalez
  • V. Avellana-Adalid
  • C. Alli
  • A. Baron Van Evercooren
Part of the Topics in Neuroscience book series (TOPNEURO)


Multiple sclerosis (MS) results from a combination of genetically determined susceptibility, environmental factors, viral or bacterial agents, soluble cytokines released during the inflammatory and autoimmune responses, and probably other, as yet undetermined etiologic agents. The disease can cause variable degrees of tissue destruction in the central nervous system (CNS), ranging from marginal demyelination to complete oligodendrocyte loss, severe glial scarring [1], and axonal transection. In some instances oligodendrocytes are morphologically preserved in demyelination plaques and remain capable of differentiating and remyelinating, as shown in humans and various model systems [1, 3]. In other cases, however, oligodendrocytes vanish and progenitors have to migrate into the plaque and proliferate. Adult oligodendrocyte progenitors are different from their post-natal counterparts, but seem to retain the ability to migrate and proliferate under the influence of specific growth factors [4]. However, the proliferating pool is limited, as is its ability to migrate [5, 6].


Neural Tube Ventricular Zone Floor Plate Oligodendrocyte Progenitor Glial Progenitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lucchinetti CF, Brück W, Rodriguez M, Lassmann H (1996) Distinct patterns of multiple sclerosis pathology indicated heterogeneity in pathogenesis. Brain Pathol 6:259–274PubMedCrossRefGoogle Scholar
  2. 2.
    Trapp BD, Peterson J, Ransohoff RM et al. (1998) Axonal transection in the lesions of multiple sclerosis. New England Journal of Medicine 338(5): 278–285PubMedCrossRefGoogle Scholar
  3. 3.
    Miller DJ, Asakura K, Rodriguez M (1996) Central nervous system remyelination — Clinical application of basic neuroscience principles. Brain Pathol 6: 331–344PubMedCrossRefGoogle Scholar
  4. 4.
    Shi J, Marinovich A, Barres BA (1998) Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. J Neurosci 18: 4627–4636PubMedGoogle Scholar
  5. 5.
    Keirstead HS, Blakemore WF (1998) Response of the oligodendrocyte progenitor cell population (defined by NG2) to demyelination of the adult spinal cord. Glia 22:161–170PubMedCrossRefGoogle Scholar
  6. 6.
    Gensert JM, Goldman JE (1997) Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19: 197–203PubMedCrossRefGoogle Scholar
  7. 7.
    Virchow R (1854) Ueber die ausgebreitete Vorkommen einer dem Nervenmark analogen Substanz in den tierischen Geweben. Arch Pat Anat Physiol Klin Med 6: 562–572Google Scholar
  8. 8.
    Rio-Hortega P (1919) El tercer elemento de los centros nerviosos. I. La microglia normal. II. Intervención de la microglia en los procesos patológicos (Celulas en bastoci-to y cuerposgranulo-adiposos). III. Naturaleza probable de la microglia. Bol Soc Esp Biol 9: 69–129Google Scholar
  9. 9.
    Perry VH, Gordon S (1988) Macrophages and microglia in the nervous system. Trends Neurosci 11: 273–277PubMedCrossRefGoogle Scholar
  10. 10.
    von Lenhossék M (1891) Zur Kenntnis der Neuroglia des menschlihen Rückenmarkes. Verh Anat Ges 5: 193–221Google Scholar
  11. 11.
    Rakic P (1972) Mode of cell migration to superficial layers of fetal monkey neocortex. J Comp Neurol 145: 61–84PubMedCrossRefGoogle Scholar
  12. 12.
    Rakic P (1981) Neuronal-glial interaction during brain development. Trends Neurosci 4: 184–187CrossRefGoogle Scholar
  13. 13.
    Choi BH (1981) Radial glia of developing human fetal spinal cord: Golgi, immuno-histochemical and electron microscopic study. Brain Res 227(2): 249–267PubMedGoogle Scholar
  14. 14.
    Hatten ME (1990) Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the mammalian brain. Trends Neurosci 13: 179–184PubMedCrossRefGoogle Scholar
  15. 15.
    Rakic P, Sidman R (1973) Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol 152: 133–162PubMedCrossRefGoogle Scholar
  16. 16.
    Rakic P (1975) Synaptic specificity in the cerebellar cortex: study of anomalous circuits induced by single gene mutations in mice. Cold Spring Harbor Symp Quant Biol 40: 333–346CrossRefGoogle Scholar
  17. 17.
    Fishell G, Hatten ME (1991) Astrotactin provides a receptor system for glia-guided neuronal migration. Development 113: 755–765PubMedGoogle Scholar
  18. 18.
    Edmunson JC, Liem RKH, Kuster JC, Hatten MC (1988) Astrotactin: a novel neuronal cell surface antigen that mediates neuronal-astroglial interactions in cerebellar microcultures. J Cell Biol 106: 505–517CrossRefGoogle Scholar
  19. 19.
    Robertson W (1899) On a new method of obtaining a black reaction in certain tissue elements of the central nervous system (platinum method). Scottish Med Surg J 4: 23Google Scholar
  20. 20.
    Robertson W (1900) A microscopic demonstration of the normal and pathological-histology of mesoglia cells. J Ment Sci 46: 733–752Google Scholar
  21. 21.
    Rio-Hortega P (1921) Estudios sobre la neuroglia. La glia de escarsas radiaciones (oligodendroglia). Bol Soc Esp Biol 21: 64–92Google Scholar
  22. 22.
    Wood P, Bunge RP (1984) The biology of the oligodendrocyte. In: Norton WT (ed): Oligodendroglia, advances in Neurochemistry. Plenum, New York, pp 1–46Google Scholar
  23. 23.
    Caroni P, Schwab ME (1989) Codistribution of neurite growth inhibitors and oligodendrocytes in rat CNS: appearance follows nerve fiber growth and precedes myelination. Dev Biol 136: 287–295PubMedCrossRefGoogle Scholar
  24. 24.
    Sauer FC (1936) The interkinetic migration of embryonic epithelial nuclei. J Morphol 60: 1–11CrossRefGoogle Scholar
  25. 25.
    Kilpatrick TJ, Richards LJ, Bartlett PF (1995) The regulation of neural precursor cells within the mammalian brain. Mol Cell Neurosci 6: 2–5PubMedCrossRefGoogle Scholar
  26. 26.
    Temple S, Quian X (1996) Vertebrate neural progenitor cells: subtypes and regulation. Curr Opin Neurobiol 6: 11–17PubMedCrossRefGoogle Scholar
  27. 27.
    Yu W-P, Collarini EJ, Pringle NP, Richardson WD (1994) Embryonic expression of myelin genes: evidence for a focal source of oligodendrocyte precursors in the ventricular zone of the neural tube. Neuron 12: 1353–1362PubMedCrossRefGoogle Scholar
  28. 28.
    Warf BC, Fok-Seang J, Miller RH (1991) Evidence for the ventral origin of oligodendrocyte precursors in the rat spinal cord. J Neurosci 11: 2477–2488PubMedGoogle Scholar
  29. 29.
    Qian X, Davis AA, Goderie SK, Temple S (1997) FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron 18(1): 81–93PubMedCrossRefGoogle Scholar
  30. 30.
    Mason I (1994) The ins and outs of fibroblast growth factors. Cell 78: 547–552PubMedCrossRefGoogle Scholar
  31. 31.
    Mignatti P, Morimoto T, Rifkin DB (1992) Basic fibroblast growth factr, a protein devoid of secretory signal sequence, is released by cells via a pathwayindependent of the endoplasmic reticulum-golgi complex. J Cell Physiol 151: 181–193CrossRefGoogle Scholar
  32. 32.
    Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, McKay RDG (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Gene Dev 10: 3129–3140PubMedCrossRefGoogle Scholar
  33. 33.
    Ben-Hur T, Rogister B, Murray K, Rougon G, Dubois-Dalcq M (1998) Growth and fate of PSA-NCAM+ precursors of the postnatal brain. J Neurosci 18(15): 5777–5788PubMedGoogle Scholar
  34. 34.
    Jones BW, Fetter RD, Tear G, Goodman CS (1995) Glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell 82(6): 1013–1023PubMedCrossRefGoogle Scholar
  35. 35.
    Hosoya T, Takizawa K, Nitta K, Hotta Y (1995) Glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell 82(6): 1025–1036PubMedCrossRefGoogle Scholar
  36. 36.
    Vincent S, Vonesch JL, Giangrande A (1996) Glide directs glial fate commitment and cell fate switch between neurones and glia. Development 122(1): 131–139PubMedGoogle Scholar
  37. 37.
    Klaes A, Menne T, Stollewerk et al. (1994) The Ets transcription factors encoded by the Drosophila gene pointed direct glial cell differentiation in the embryonic CNS. Cell 78: 149–160PubMedCrossRefGoogle Scholar
  38. 38.
    Giesen K, Hummel T, Stollewerk A et al. (1997) Glial development in the Drosophila CNS requires concomitant activation of glial and repression of neuronal differentiation genes. Development 124(12): 2307–2316PubMedGoogle Scholar
  39. 39.
    Brown JL, Sonoda S, Ueda H et al. (1991) Repression of the Drosophila fushi tarazu (ftz) segmentation gene. EMBO J 10: 665–674PubMedGoogle Scholar
  40. 40.
    Tanabe Y, Jessell TM (1996) Diversity and pattern in the developing spinal cord. Science 274: 1115–1123PubMedCrossRefGoogle Scholar
  41. 41.
    Hynes M, Poulsen K, Tessier-Lavigne M, Rosenthal A (1995) Control of neuronal diversity by the floor plate: contact-mediated induction of midbrain dopaminergic neurons. Cell 80(1): 95–101PubMedCrossRefGoogle Scholar
  42. 42.
    Ye W, Shimamura K, Rubenstein JL et al. (1998) FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93(5): 755–766PubMedCrossRefGoogle Scholar
  43. 43.
    Noll E, Miller RH (1993) Oligodendrocyte precursors originate at the ventral ventricular zone dorsal to the ventral midline region in the embryonic rat spinal cord. Development 118(2): 563–573PubMedGoogle Scholar
  44. 44.
    Raff MC, Williams BP, Miller RH (1984) The in vitro differentiation of a bipotential progenitor cell. EMBO J 3: 1857–1864PubMedGoogle Scholar
  45. 45.
    Ono K, Bansal R, Payne J et al. (1995) Early development and dispersal of oligodendrocyte precursors in the embryonic chick spinal cord. Development 121(6): 1743–1754PubMedGoogle Scholar
  46. 46.
    Hajihosseini M, Tham TN, Dubois-Dalcq M (1996) Origin of oligodendrocytes within the human spinal cord. J Neurosci 16(24): 7981–7994PubMedGoogle Scholar
  47. 47.
    Pringle NP, Yu WP, Guthrie S et al. (1996) Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and sonic hedgehog. Dev Biol 177(1): 30–42PubMedCrossRefGoogle Scholar
  48. 48.
    Poncet C, Soula C, Trousse F et al. (1996) Induction of oligodendrocyte progenitors in the trunk neural tube by ventralizing signals: effects of notochord and floor plate grafts, and of sonic hedgehog. Mech Dev 60: 13–32PubMedCrossRefGoogle Scholar
  49. 49.
    Pringle NP, Guthrie S, Lumsden A, Richardson WD (1998) Dorsal spinal cord neu-roepithelium generates astrocytes but not oligodendrocytes. Neuron 20: 883–893PubMedCrossRefGoogle Scholar
  50. 50.
    Spassky N, Goujet-Zalc C, Parmantier E et al. (1998) Multiple restricted origin of oligodendrocytes. J Neurosci 18: 8331–8343PubMedGoogle Scholar
  51. 51.
    Cameron-Curry P, Le Douarin NM (1995) Oligodendrocyte precursors originate from both the dorsal and the ventral parts of the spinal cord. Neuron 15: 1299–1310PubMedCrossRefGoogle Scholar
  52. 52.
    Raff MC, Miller RH, Noble M (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303(5916): 390–396PubMedCrossRefGoogle Scholar
  53. 53.
    Me Kinnon RD, Dubois-Dalcq M (1995) Cytokines and growth factors in the development and regeneration of oligodendrocytes. In: R Benveniste (ed) Cytokines and the CNS: development, defense and disease, CRC. Boca-Raton, FloridaGoogle Scholar
  54. 54.
    Pfeiffer S, Warrington AE, Bansal R (1994) The oligodendrocyte and its many cellular processes. Trends Cell Biol 3: 191–197CrossRefGoogle Scholar
  55. 55.
    Grinspan JB, Franceschini B (1995) Platelet-derived growth factor is a survival factor for PSA-NCAM+ oligodendrocyte pre-progenitor cells. J Neurosci Res 41(4): 540–551PubMedCrossRefGoogle Scholar
  56. 56.
    Goldman JE, Hirano M, Yu RK, Seyfried TN (1984) GD3 ganglioside is a glycolipid characteristic of immature neuroectodermal cells. J Neuroimmunol 7(2–3): 179–192PubMedCrossRefGoogle Scholar
  57. 57.
    Eisenbarth GS, Walsh FS, Nirenberg M (1979) Monoclonal antibody to a plasma membrane antigen of neurons. Proc Natl Acad Sci USA 76(10): 4913–4917PubMedCrossRefGoogle Scholar
  58. 58.
    Sommer I, Schachner M (1981) Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol 83(2): 311–327PubMedCrossRefGoogle Scholar
  59. 59.
    Bansal R, Warrington AE, Gard AL et al. (1989) Multiple and novel specificities of monoclonal antibodies O1, O4, and R-mAb used in the analysis of oligodendrocyte development. J Neurosci Res 24(4): 548–557PubMedCrossRefGoogle Scholar
  60. 60.
    McMorris FA, McKinnon RD (1996) Regulation of oligodendrocyte development and CNS myelination by growth factors: prospects for therapy of demyelinating disease. Brain Pathol 6(3): 313–329PubMedCrossRefGoogle Scholar
  61. 61.
    Bansal R, Kumar M, Murray K et al. (1996) Regulation of FGF receptors in the oligodendrocyte lineage. Mol Cell Neurosci 7(4): 263–275PubMedCrossRefGoogle Scholar
  62. 62.
    Weiss S, Reynolds BA, Vescovi A et al. (1996) Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 19(9): 387–393PubMedCrossRefGoogle Scholar
  63. 63.
    Barres BA, Lazar MA, Raff MC (1994b) A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development 120(5): 1097–1108Google Scholar
  64. 64.
    Baas D, Bourbeau D, Sarlieve LL et al. (1997) Oligodendrocyte maturation and progenitor cell proliferation are independently regulated by thyroid hormone. Glia 19(4): 324–332PubMedCrossRefGoogle Scholar
  65. 65.
    Noble M, Murray K, Stroobant P et al. (1988) Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendro-cyte/type-2 astrocyte progenitor cell. Nature 333(6173): 560–562PubMedCrossRefGoogle Scholar
  66. 66.
    Richardson WD, Pringle N, Mosley M J et al. (1988) A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell 53(2): 309–319PubMedCrossRefGoogle Scholar
  67. 67.
    Armstrong RC, Harvath L, Dubois-Dalcq ME (1990) Type 1 astrocytes and oligoden-drocyte-type 2 astrocyte glial progenitors migrate toward distinct molecules. J Neurosci Res 27(3): 400–407PubMedCrossRefGoogle Scholar
  68. 68.
    Bögler O, Wren D, Barnett SC et al. (1990) Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells. Proc Natl Acad Sci USA 87(16): 6368–6372PubMedCrossRefGoogle Scholar
  69. 69.
    McMorris FA, Dubois-Dalcq M (1988) Insulin-like growth factor I promotes cell proliferation and oligodendroglial commitment in rat glial progenitor cells developing in vitro. J Neurosci Res 21(2–4): 199–209PubMedCrossRefGoogle Scholar
  70. 70.
    Barres BA, Raff MC, Gaese F et al. (1994a) A crucial role for neurotrophin-3 in oligodendrocyte development. Nature 367(6461): 371–375PubMedCrossRefGoogle Scholar
  71. 71.
    Canoll PD, Musacchio JM, Hardy R et al. (1996) GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron 17(2): 229–243PubMedCrossRefGoogle Scholar
  72. 72.
    Kramer R, Bucay N, Kane DJ et al. (1996) Neuregulins with an Ig-like domain are essential for mouse myocardial and neuronal development. Proc Natl Acad Sci USA 93(10): 4833–4838PubMedCrossRefGoogle Scholar
  73. 73.
    Beck KD, Powell-Braxton L, Widmer HR et al. (1995) Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron 14(4): 717–730PubMedCrossRefGoogle Scholar
  74. 74.
    Soriano P (1997) The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development 124(14): 2691–2700PubMedGoogle Scholar
  75. 75.
    Calver A, Hall A, Yu W et al. (1998) Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron 20: 869–882PubMedCrossRefGoogle Scholar
  76. 76.
    Barres BA, Raff MC (1994) Control of oligodendrocyte number in the developing rat optic nerve. Neuron 12(5): 935–942PubMedCrossRefGoogle Scholar
  77. 77.
    Kreider BQ, Grinspan JB, Waterstone MB et al. (1995) Partial purification of a novel mitogen for oligodendroglia. J Neurosci Res 40(1): 44–53PubMedCrossRefGoogle Scholar
  78. 78.
    Giulian D, Johnson B, Krebs JF, Tapscott MJ et al. (1991) A growth factor from neuronal cell lines stimulates myelin protein synthesis in mammalian brain. J Neurosci 11(2): 327–336PubMedGoogle Scholar
  79. 79.
    Hunter SF, Bottenstein JE (1990) Growth factor responses of enriched bipotential glial progenitors. Brain Res Dev Brain Res 54(2): 235–248PubMedCrossRefGoogle Scholar
  80. 80.
    Hardy R, Reynolds R (1993) Neuron-oligodendroglial interactions during central nervous system development. J Neurosci Res 36(2): 121–126PubMedCrossRefGoogle Scholar
  81. 81.
    Avellana-Adalid V, Nait-Oumesmar B, Lachapelle F, Baron-Van Evercooren A (1996) Expansion of rat oligodendrocyte progenitors into proliferative “oligospheres” that retain differentiation potential. J Neurosci Res 45(5): 558–570PubMedCrossRefGoogle Scholar
  82. 82.
    Zhang S, Lundberg C, Lipsitz D (1998) Generation of oligodendroglial progenitors from neural stem cells. J Neurocytol (in press)Google Scholar
  83. 83.
    Asakura K, Hunter SF, Rodriguez M (1997) Effects of transforming growth factor-beta and platelet-derived growth factor on oligodendrocyte precursors: insights gained from a neuronal cell line. J Neurochem 68(6): 2281–2290PubMedCrossRefGoogle Scholar
  84. 84.
    Franklin R, ffrench-Constant C (1996) Transplantation and repair in multiple sclerosis. In: the molecular biology of multiple sclerosis. Russel W (ed) John Wiley and Sons, Cambridge, pp 231–242Google Scholar
  85. 85.
    Lachapelle F, Nait-Oumesmar B, Avellana-Adalid V et al. (1996) FGF-2, EGF and PDGF differentially activate in vivo the potential of grafted cells derived from adult subven-tricular zone to generate myeling-forming oligodendrocytes. J Neurosci 390: 13Google Scholar
  86. 86.
    Nait-Oumesmar B, Lachapelle F, Vignais L et al. (1996) Potential repair of adult sub-ventricular zone following chemically induced demyelination. J Neurosci 390: 13Google Scholar
  87. 87.
    Jacobson M (1991) Developmental Neurobiology. Plenum, New York, London, p 101Google Scholar
  88. 88.
    Jacobson M (1991) Developmental Neurobiology. Plenum, New York, London, p 45Google Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • G. G. Consalez
    • 1
  • V. Avellana-Adalid
    • 2
  • C. Alli
    • 1
  • A. Baron Van Evercooren
    • 2
  1. 1.Department of NeuroscienceSan Raffaele Scientific InstituteMilanItaly
  2. 2.INSERM 134, Cellular, Molecular and Clinical NeurobiologyHôpital de la SalpetrièreParisFrance

Personalised recommendations