Skip to main content

Part of the book series: Topics in Neuroscience ((TOPNEURO))

Abstract

Immune-privileged sites such as the central nervous system (CNS), eye and testes, are physiologically adapted to protect their delicate structures and functions from damaging inflammatory responses. Major features contributing to the immune privilege of the CNS include: the blood-brain barrier (BBB) — the tight endothelial junctions of the brain vasculature that limit access of plasma proteins and blood-derived cells to the CNS; the lack of a conventional lymphatic system; the absence within the CNS parenchyma of dendritic cells, the most potent antigen-presenting cells (APC) for initiation of T cell responses; and the paucity of class I and class II major histocompatibility complex (MHC) molecules on resident CNS cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wekerle H, Linington C, Lassmann H, Meyermann R (1986) Cellular immune reactivity within the CNS. Trends Neurosci 9: 271–277

    Article  Google Scholar 

  2. Lassmann H, Schmied M, Vass K, Hickey WF (1993) Bone marrow derived elements and resident microglia in brain inflammation. Glia 7: 19–24

    Article  PubMed  CAS  Google Scholar 

  3. Hickey WF, Hsu BL, Kimura H (1991) T-cell entry into the rat central nervous system. J Neurosci Res 28: 254–260

    Article  PubMed  CAS  Google Scholar 

  4. Cserr HF, Knopf PN (1992) Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: A new view. Immunol Today 13: 507–512

    Article  PubMed  CAS  Google Scholar 

  5. Kreutzberg GW (1996) Microglia: A sensor for pathological events in the CNS. Trends Neurosci 19: 312–318

    Article  PubMed  CAS  Google Scholar 

  6. Ransohoff RM (1997) Chemokines in neurological disease models: Correlation between chemokine expression patterns and inflammatory pathology. J Leukoc Biol 62: 645–652

    PubMed  CAS  Google Scholar 

  7. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392: 245–252

    Article  PubMed  CAS  Google Scholar 

  8. Knopf PN, Harling-Berg CJ, Cserr HF et al. (1998) Antigen-dependent intrathecal antibody synthesis in the normal rat brain: Tissue entry and local retention of antigen-specific B cells. J Immunol 161: 692–701

    PubMed  CAS  Google Scholar 

  9. Tourtellotte WW, Walsh MJ, Baumhefner RW et al. (1984) The current status of multiple sclerosis intra-blood-brain-barrier IgG synthesis. Ann N Y Acad Sci 436: 52–67

    Article  PubMed  CAS  Google Scholar 

  10. Tyor WR, Griffin DE (1993) Virus specificity and isotype expression of intraparenchymal antibody-secreting cells during Sindbis virus encephalitis in mice. J Neuroimmunol 48: 37–44

    Article  PubMed  CAS  Google Scholar 

  11. Poltorak M, Freed WJ (1995) Transplantation into the central nervous system. In: Keane RW, Hickey WF (eds) Immunology of the nervous system. Oxford University, Oxford, pp 611–641

    Google Scholar 

  12. Matyszak MK, Perry VH (1995) Demyelination in the central nervous system following a delayed-type hypersensitivity response to bacillus Calmette-Guèrin. Neuroscience 64: 967–977

    Article  PubMed  CAS  Google Scholar 

  13. Matyszak MK, Perry VH (1996) The potential role of dendritic cells in immune-mediated inflammatory responses in the central nervous system. Neuroscience 74:599–608

    Article  PubMed  CAS  Google Scholar 

  14. Serot JM, Foliquet B, Bene MC, Faure GC (1997) Ultrastructural and immunohisto-logical evidence of dendritic-like cells within human choroid plexus epithelium. Neuroreport 8: 1995–1998

    Article  PubMed  CAS  Google Scholar 

  15. Hanly A, Petito CK (1998) HLA-DR positive dendritic cells of the human choroid plexus: A potential reservoir of HIV in the central nervous system. Hum Pathol 29:88–93

    Article  PubMed  CAS  Google Scholar 

  16. Raine CS (1985) Experimental allergic encephalomyelitis and experimental allergic neuritis. In: Koetsier JC (ed) Demyelinating diseases. Elsevier Science, Amsterdam, pp 429–503 (Handbook of clinical neurology, vol 47)

    Google Scholar 

  17. Owens T, Renno T, Taupin V, Krakowski M (1995) Inflammatory cytokines in the brain: does the CNS shape immune responses? Immunol Today 15: 566–571

    Article  Google Scholar 

  18. Hafler DA, Weiner HL (1995) Immunologic mechanisms and therapy in multiple sclerosis. Immunol Rev 144: 75–107

    Article  PubMed  CAS  Google Scholar 

  19. Wucherpfennig KW (1995) Autoimmunity in the central nervous system: mechanisms of antigen presentation and recognition. Clin Immunol Immunopathol 72:293–306

    Article  Google Scholar 

  20. Oldstone MBA (1990) Molecular mimicry and autoimmune disesase. Cell 50:819–820

    Article  Google Scholar 

  21. Graeber MB, Streit WJ, Buringer D et al. (1992) Ultrastructural location of major histocompatibility complex (MHC) class II perivascular cells in histologically normal human brain. J Neuropathol Exp Neurol 51: 303–311

    Article  PubMed  CAS  Google Scholar 

  22. De Simone R, Giampaolo A, Giometto B et al. (1995) The costimulatory molecule B7 is expressed on human microglia in culture and in multiple sclerosis acute lesions. J Neuropathol Exp Neurol 54: 175–187

    Article  PubMed  CAS  Google Scholar 

  23. Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone-marrow derived and present antigen in vivo. Science 239: 290–292

    Article  PubMed  CAS  Google Scholar 

  24. Ford AL, Goodsall AL, Hickey WF, Sedgwick JD (1995) Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J Immunol 154: 4309–4321

    PubMed  CAS  Google Scholar 

  25. Perry VH, Gordon S (1988) Macrophages and microglia in the nervous system. Trends Neurosci 11:273–279

    Article  PubMed  CAS  Google Scholar 

  26. Hayes GM, Woodroofe MN, Cuzner LM (1987) Microglia are the major cell type expressing MHC class II in human white matter. J Neurol Sci 80: 25–37

    Article  PubMed  CAS  Google Scholar 

  27. Ulvestad E, Williams K, Bö L et al. (1994) HLA class II molecules (HLA-DR, -DP, -DQ) on cells in the human CNS in situ and in vitro. Immunology 82: 535–541

    PubMed  CAS  Google Scholar 

  28. McGeer P, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease. Neurobiology 38: 1285–1291

    CAS  Google Scholar 

  29. McGeer P, Kawamato T, Walker DG et al. (1993) Microglia in degenerative neurological disease. Glia 7: 84–92

    Article  PubMed  CAS  Google Scholar 

  30. An SF, Ciardi A, Giometto B et al. (1996) Investigation on the expression of major histocompatibility complex class II and cytokines and detection of HIV-1 DNA within brains of asymptomatic and symptomatic HIV-1-positive patients. Acta Neuropathol 91: 494–503

    Article  PubMed  CAS  Google Scholar 

  31. Ulvestad E, Williams K, Vedeler C et al. (1994) Reactive microglia in multiple sclerosis lesions have an increased expression of receptors for the Fc part of IgG. J Neurol Sci 121:125–131

    Article  PubMed  CAS  Google Scholar 

  32. Cash E, Rott O (1994) Microglial cells qualify as the stimulators of unprimed CD4+ and CD8+ T lymphocytes in the central nervous system. Clin Exp Immunol 98: 313–318

    Article  PubMed  CAS  Google Scholar 

  33. Frei K, Siepl C, Groscurth P et al. (1987) Antigen presentation and tumor cytotoxicity by interferon-γ treated microglial cells. Eur J Immunol 17: 1271–1278

    Article  PubMed  CAS  Google Scholar 

  34. Cannella B, Raine CS (1995) The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 37: 424–435

    Article  PubMed  CAS  Google Scholar 

  35. Gerritse K, Laman JD, Noëlle RJ et al. (1996) CD40-CD40 ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci USA 93: 2499–2504

    Article  PubMed  CAS  Google Scholar 

  36. Issazadeh S, Navikas V, Schaub M et al. (1998) Kinetics of expression of costimulatory molecules and their ligands in murine relapsing autoimmune encephalomyelitis in vivo. J Immunol 161:1104–1112

    PubMed  CAS  Google Scholar 

  37. Aloisi F, Penna G, Cerase J et al. (1997) IL-12 production by central nervous system microglia is inhibited by astrocytes. J Immunol 159: 1604–1612

    PubMed  CAS  Google Scholar 

  38. Krakowski ML, Owens T (1997) The central nervous system environment controls effector CD4+ T cell cytokine profile in experimental allergic encephalomyelitis. Eur J Immunol 27: 2840–2847

    Article  PubMed  CAS  Google Scholar 

  39. Trinchieri G (1995) Interleukin-12: A proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 13: 251–276

    Article  PubMed  CAS  Google Scholar 

  40. Williams K, Ulvestad E, Cragg L et al. (1993) Induction of primary T cell responses by human glial cells. J Neurosci Res 36: 382–390

    Article  PubMed  Google Scholar 

  41. Matsumoto Y, Ohmori K, Fujiwara M (1992) Immune regulation by brain cells in the central nervous system: Microglia but not astrocytes present myelin basic protein to encephalitogenic T cells under in vivo-mimicking conditions. Immunology 76: 209–216

    PubMed  CAS  Google Scholar 

  42. Dhib-Jalbut S, Gogate N, Jiang H et al. (1996) Human microglia activate lymphopro-liferative responses to recall viral antigens. J Neuroimmunol 65: 67–73

    Article  PubMed  CAS  Google Scholar 

  43. Aloisi F, Ria F, Penna G, Adorini L (1998) Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 cell activation. J Immunol 160: 4671–4680

    PubMed  CAS  Google Scholar 

  44. Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383: 787–793

    Article  PubMed  CAS  Google Scholar 

  45. Aloisi F, Ria F, De Simone R et al. (1998) Relative efficiency of microglia, astrocytes, dendritic cells and B cells in naive CD4+ T cell priming and Th1/Th2 cell restimulation, (submitted)

    Google Scholar 

  46. Ford AL, Foulcher E, Lemckert FA, Sedgwick JD (1996) Microglia induce CD4 T lymphocyte final effector function and death. J Exp Med 184:1737–1745

    Article  PubMed  CAS  Google Scholar 

  47. Renno T, Krakowski M, Piccirillo C et al. (1995) TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Thl cytokines. J Immunol 154: 944–953

    PubMed  CAS  Google Scholar 

  48. Aloisi F, Penna G, Polazzi E et al. (1999) CD40-CD154 interaction and IFN-γ are required for IL-12 but not prostaglandin E2 secretion by microglia during antigen presentation to Thl cells. J Immunol (in press)

    Google Scholar 

  49. Li H, Newcombe J, Groome P, Cuzner ML (1993) Characterization and distribution of phagocytic macrophages in multiple sclerosis plaques. Neuropathol Appl Neurobiol 19:214–223

    Google Scholar 

  50. Kimelberg HK, Norenberg MD (1989) Astrocytes. Sci Am 260: 66–72

    Article  CAS  Google Scholar 

  51. Lee SC, Moore GRW, Golenwsky G, Raine CS (1990) Multiple sclerosis: A role for astroglia in active demyelination suggested by class II MHC expression and ultra-structural study. J Neuropathol Exp Neurol 49:122–136

    Article  PubMed  CAS  Google Scholar 

  52. Morris MM, Dyson H, Baker D et al. (1997) Characterization of the cellular and cytokine response in the central nervous system following Semliki Forest virus infection. J Neuroimmunol 74:185–197

    Article  PubMed  CAS  Google Scholar 

  53. Vass K, Lassmann H (1990) Intrathecal application of interferon gamma: Progressive appearance of MHC antigens within the rat nervous system. Am J Pathol 137:789–800

    PubMed  CAS  Google Scholar 

  54. Fontana A, Fierz W, Wekerle H (1984) Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature 307: 273–275

    Article  PubMed  CAS  Google Scholar 

  55. Merrill, JE, Benveniste EN (1996) Cytokines in inflammatory brain lesions: Helpful and harmful. Trends Neurosci 19: 331–338

    Article  PubMed  CAS  Google Scholar 

  56. Sedgwick JD, Mössner R, Schwender S, ter Meulen V (1991) Major histocompatibility complex-expressing nonhematopoietic astroglial cells prime only CD8+ T lymphocytes: Astroglial cells as perpetuators but not initiators of CD4+ T cell responses in the central nervous system. J Exp Med 173: 1235–1246

    Article  PubMed  CAS  Google Scholar 

  57. Gold R, Schmied M, Tontsch U et al. (1996) Antigen presentation by astrocytes primes rat T lymphocytes for apoptotic cell death: A model for T cell apoptosis in vivo. Brain 119:651–659

    Article  PubMed  Google Scholar 

  58. Matsumoto Y, Hanawa H, Tsuchida M, Abo T (1993) In situ inactivation of infiltrating T cells in the central nervous system with autoimmune encephalomyelitis. The role of astrocytes. Immunology 79: 381–388

    PubMed  CAS  Google Scholar 

  59. Meinl E, Aloisi F, Ertl B et al. (1994) Multiple sclerosis. Immunomodulatory effects of human astrocytes on T cells. Brain 117:1323–1330

    Article  PubMed  Google Scholar 

  60. Hailer NP, Heppner FL, Haas D, Nitsch R (1998) Astrocytic factors deactivate antigen presenting cells that invade the central nervous system. Brain Pathol 8:459–474

    Article  PubMed  CAS  Google Scholar 

  61. Steinman L (1996) Multiple sclerosis: a coordinated attack against myelin in the central nervous system. Cell 85: 299–302

    Article  PubMed  CAS  Google Scholar 

  62. Agresti C, Bernardo A, Del Russo N et al. (1998) Synergistic stimulation of MHC class I and IRF-1 gene expression by IFN-γ and TNF-α in oligodendrocytes. Eur J Neurosci 10: 2975–2983

    Article  PubMed  CAS  Google Scholar 

  63. Jurewicz A, Biddison WE, Antel JP (1998) MHC class I-restricted lysis of human oligodendrocytes by myelin basic protein peptide-specific CD8 T lymphocytes. J Immunol 160: 3056–3059

    PubMed  CAS  Google Scholar 

  64. Selmaj K, Brosnan CF, Raine CS (1991) Colocalization of lymphocytes bearing γδ T-cell receptor and heat shock protein hsp65-positive oligodendrocytes in multiple sclerosis. Proc Natl Acad Sci USA 88: 6452–6456

    Article  PubMed  CAS  Google Scholar 

  65. Freedman MS, Bitar R, Antel JP (1993) γδ T-cell-human glial cell interactions. II. Relationship between heat shock protein expression and susceptibility to cytolysis. J Neuroimmunol 74: 143–148

    Article  Google Scholar 

  66. Linington C, Bradl M, Lassmann H et al. (1988) Augmentation of demyelination in rat acute allergie encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 130:443–454

    PubMed  CAS  Google Scholar 

  67. Joly E, Mucke L, Oldstone MBA (1991) Viral persistence in neurons explained by lack of major histocompatibility class I expression. Science 253: 1283–1285

    Article  PubMed  CAS  Google Scholar 

  68. Neumann H, Cavaliè A, Jenne DE, Wekerle H (1995) Induction of MHC class I genes in neurons. Science 269: 549–552

    Article  PubMed  CAS  Google Scholar 

  69. Neumann H, Schmidt H, Cavaliè A et al. (1997) Major histocompatibility complex (MHC) class I gene expression in single neurons of the central nervous system: Differential regulation by IFN-γ and tumor necrosis factor-α. J Exp Med 185:305–316

    Article  PubMed  CAS  Google Scholar 

  70. Aloisi F, Wekerle H (1990) Immune reactivity in the central nervous system: Intercellular control of the expression of major histocompatibility antigens. In: Levi G (ed) Differentiation and functions of glial cells. Wiley Liss, New York, pp 371–378

    Google Scholar 

  71. Neumann H, Boucraut J, Hahnel C et al. (1996) Neuronal control of MHC class II inducibility in rat astrocytes and microglia. Eur J Neurosci 8: 2582–2590

    Article  PubMed  CAS  Google Scholar 

  72. Neumann H,Misgeld T,Matsumuro K, Wekerle H (1998) Neurotrophins inhibit major histocompatibility class II inducibility of microglia: Involvement of the p75 neurotrophin receptor. Proc Natl Acad Sci USA 95: 5779–5784

    Article  PubMed  CAS  Google Scholar 

  73. Maehlen J, Olsson T, Zachau A et al. (1989) Local enhancement of major histocompatibility complex (MHC) class I and class II expression and cell infiltration in experimental allergic encephalomyelitis around axotomized motor neurons. J Neuroimmunol 23:125–132

    Article  PubMed  CAS  Google Scholar 

  74. Ohmori, K, Hong Y, Fujiwara M, Matsumoto Y (1992) In situ demonstration of proliferating cells in the rat central nervous system during experimental autoimmune encephalomyelitis. Evidence suggesting that most infiltrating T cells do not proliferate in the target organ. Lab Invest 66: 54–62

    PubMed  CAS  Google Scholar 

  75. Irani DN, Lin K-I, Griffin DE (1997) Regulation of brain-derived T cells during acute central nervous system inflammation. J Immunol 158: 2318–2326

    PubMed  CAS  Google Scholar 

  76. Bauer J, Wekerle H, Lassmann H (1995) Apoptosis in brain-specific autoimmune diseases. Curr Opin Immunol 7: 839–843

    Article  PubMed  CAS  Google Scholar 

  77. Bauer J, Bradl M, Hickey WF et al. (1998) T-cell apoptosis in inflammatory brain lesions. Destruction of T cells does not depend on antigen recognition. Am J Pathol 153: 715–724

    Article  PubMed  CAS  Google Scholar 

  78. Taylor AW, Streilein JW (1996) Inhibition of antigen-stimulated effector T cells by human cerebrospinal fluid. Neuroimmunomodul 3:112–118

    Article  CAS  Google Scholar 

  79. Sakata K, Sakata A, Kong L et al. (1998) Role of Fas/FasL interaction in physiology and pathology: the good and the bad. Clin Immunol Immunopathol 87:1–7

    Article  PubMed  CAS  Google Scholar 

  80. D’Souza SD, Bonetti B, Balasingam V et al. (1996) Multiple sclerosis: Fas signaling in oligodendrocyte cell death. J Exp Med 184: 2361–2370

    Article  PubMed  Google Scholar 

  81. Dowling P, Shang G, Raval S et al. (1996) Involvement of the CD95 (APO-1/Fas) receptor/ligand system in multiple sclerosis brain. J Exp Med 184: 1513–1518

    Article  PubMed  CAS  Google Scholar 

  82. Saas P, Walker PR, Hahne R et al. (1997) Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? J Clin Invest 99:1173–1178

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia

About this chapter

Cite this chapter

Aloisi, F. (1999). Antigen Presentation in the Central Nervous System. In: Martino, G., Adorini, L. (eds) From Basic Immunology to Immune-Mediated Demyelination. Topics in Neuroscience. Springer, Milano. https://doi.org/10.1007/978-88-470-2143-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2143-3_10

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2179-2

  • Online ISBN: 978-88-470-2143-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics