Protective Versus Harmful Responses and Immune Regulation

  • F. Di Rosa
  • V. Barnaba
Part of the Topics in Neuroscience book series (TOPNEURO)


The immune system can mount a response against a wide array of different antigens, and the rules governing its functioning are not clear yet. We outline here how the immune response is regulated at the level of (1) induction, (2) balance between different arms of immune defense, and (3) termination. We suggest that it is not easy to draw a line between protective anti-pathogen defense and harmful autoimmune attack, and provide a few examples explaining how anti-viral responses may favor autoimmunity.


Human Immunodeficiency Virus Human Immunodeficiency Virus Type Experimental Allergic Encephalomyelitis Human Autoimmune Disease Primary Lymphoid Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schwartz RH (1990) A cell culture model for T lymphocyte clonal anergy. Science 248: 1349–1356PubMedCrossRefGoogle Scholar
  2. 2.
    Janeway CJ (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1: 1–13CrossRefGoogle Scholar
  3. 3.
    Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12: 991–1045PubMedCrossRefGoogle Scholar
  4. 4.
    Kappler JW, Roehm N, Marrack P (1987) T cell tolerance by clonal elimination in the thymus Cell 49: 273–280PubMedCrossRefGoogle Scholar
  5. 5.
    Nemazee DA, Burki K (1989) Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes Nature 337: 562–566PubMedCrossRefGoogle Scholar
  6. 6.
    Schonrich G, Kalinke U, Momburg F et al. (1991) Down-regulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell 65: 293–304PubMedCrossRefGoogle Scholar
  7. 7.
    King C, Sarvetnick N (1997) Organ-specific autoimmunity. Curr Opin Immunol 9: 863–887PubMedCrossRefGoogle Scholar
  8. 8.
    Aichele P, Bachmann MF, Hengartner H, Zinkernagel RM (1996) Immunopathology or organ-specific autoimmunity as a consequence of virus infection. Immunol Rev 152: 145–156CrossRefGoogle Scholar
  9. 9.
    Bhardwaj N (1997) Interactions of viruses with dendritic cells: A double-edged sword. J Exp Med 186: 795–799PubMedCrossRefGoogle Scholar
  10. 10.
    Fujinami RS, Oldstone MB (1985) Amino acid homology between the encephalitogenic site of myelin basic protein and virus: Mechanism for autoimmunity. Science 230: 1043–1045PubMedCrossRefGoogle Scholar
  11. 11.
    Ohashi PS, Oehen S, Buerki K et al. (1991) Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65: 305–317PubMedCrossRefGoogle Scholar
  12. 12.
    Oldstone MB, Nerenberg M, Southern P et al. (1991) Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: Role of anti-self (virus) immune response. Cell 65: 319–331PubMedCrossRefGoogle Scholar
  13. 13.
    Atkinson MA, Bowman MA, Campbell L et al. (1994) Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J Clin Invest 94: 2125–2129PubMedCrossRefGoogle Scholar
  14. 14.
    Shimoda S, Nakamura M, Ishibashi H et al. (1995) HLA DRB4*0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: Evidence of molecular mimicry in human autoimmune disease. J Exp Med 181: 1835–1845PubMedCrossRefGoogle Scholar
  15. 15.
    Barnaba V, Sinigaglia F (1997) Molecular mimicry and T cell-mediated autoimmune disease. J Exp Med 185:1529–1531PubMedCrossRefGoogle Scholar
  16. 16.
    Sercarz EE, Lehmann PV, Ametani A et al. (1993) Dominance and cripticity of T cell antigenic determinants. Annu Rev Immunol 11: 729–766PubMedCrossRefGoogle Scholar
  17. 17.
    Barnaba V (1996) Viruses, hidden self-epitopes and autoimmunity. Immunol Rev 152: 47–66PubMedCrossRefGoogle Scholar
  18. 18.
    Salemi S, Caporossi AP, Boffa L et al. (1995) HIVgp120 activates autoreactive CD4-specific T cell responses by unveiling of hidden CD4 peptides during processing. J Exp Med 181: 2253–2257PubMedCrossRefGoogle Scholar
  19. 19.
    di Marzo Veronese F, Arnott D, Barnaba V et al. (1996) Autoreactive cytotoxic T lymphocytes in human immunodeficiency virus type 1-infected subjects. J Exp Med 183: 2509–2516CrossRefGoogle Scholar
  20. 20.
    Sallusto F, Cella M, Danieli C, Lanzavecchia A (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: Downregulation by cytokines and bacterial products. J Exp Med 182: 389–400PubMedCrossRefGoogle Scholar
  21. 21.
    Cella M, Engering A, Pinet V et al. (1997) Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 388: 782–787PubMedCrossRefGoogle Scholar
  22. 22.
    Banchereau J, Steinman RM (1998) Dendritic cells and control of immunity. Nature 392: 245–252PubMedCrossRefGoogle Scholar
  23. 23.
    Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T helper and a T killer cell. Nature 393: 474–478PubMedCrossRefGoogle Scholar
  24. 24.
    Bennett SRM, Carbone FR, Karamalis F et al. (1998) Help for cytotoxic T cell responses is mediated by CD40 signalling. Nature 393: 478–480PubMedCrossRefGoogle Scholar
  25. 25.
    Schoenberger SP, Toes REM, van der Voort EIH et al. (1998) T-cell help for cytotoxic T lynphocytes is mediated by CD40-CD40L interactions. Nature 393:480–483PubMedCrossRefGoogle Scholar
  26. 26.
    Unutmaz D, Pileri P, Abrignani S (1994) Antigen-independent activation of naive and memory resting T cells by a cytokine combination. J Exp Med 180: 1159–1164PubMedCrossRefGoogle Scholar
  27. 27.
    Tough DF, Borrow P, Sprent J (1996) Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 272: 1947–1950PubMedCrossRefGoogle Scholar
  28. 28.
    Benoist C, Mathis D (1998) The pathogen connection. Nature 394: 227–228PubMedCrossRefGoogle Scholar
  29. 29.
    Paul WE, Seder RA (1994) Lymphocyte responses and cytokines. Cell 76: 241–251PubMedCrossRefGoogle Scholar
  30. 30.
    Austrup F, Vestweber D, Borges E et al. (1997) P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflammed tissues. Nature 385: 81–83PubMedCrossRefGoogle Scholar
  31. 31.
    Sallusto F, Lenig D, Mackay CR, Lanzavecchia A (1998) Flexible program of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 187: 875–883PubMedCrossRefGoogle Scholar
  32. 32.
    Moore KW, Vieira P, Fiorentino DF, Trounstine ML, Khan TA, Mosmann TR (1990) Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRFI. Science 248:1230–1234PubMedCrossRefGoogle Scholar
  33. 33.
    Van Parijs L, Abbas AK (1998) Homeostasis and self-tolerance in the immune system: Turning lymphocytes off. Science 280: 243–248PubMedCrossRefGoogle Scholar
  34. 34.
    Nagata S, Golstein P (1995) The Fas death factor. Science 267: 1449–1456PubMedCrossRefGoogle Scholar
  35. 35.
    Sprent J (1997) Immunological memory. Curr Opin Immunol 9: 371–379PubMedCrossRefGoogle Scholar
  36. 36.
    Saito T (1998) Negative regulation of T cell activation. Curr Opin Immunol 10: 313–321PubMedCrossRefGoogle Scholar
  37. 37.
    De Vita L, Accapezzato D, Mangino G et al. (1998) Defective Th1 and Th2 cytokine synthesis in the T-T cell presentation model for lack of CD40-CD40 ligand interaction. Eur J Immunol 28: 3552–3563PubMedCrossRefGoogle Scholar
  38. 38.
    Karpus WJ, Gould KE, Swanborg RH (1992) CD4+ suppressor cells of autoimmune encephalomyelitis respond to T cell receptor-associated determinants on effector cells by interleukin-4 secretion. Eur J Immunol 22: 1757–1763PubMedCrossRefGoogle Scholar
  39. 39.
    Kennedy MK, Torrance DS, Picha KS, Mohler KM (1992) Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery. J Immunol 149: 2496–505PubMedGoogle Scholar
  40. 40.
    Di Rosa F, Francesconi A, Di Virgilio A et al. (1998) Lack of Th2 cytokine increase during spontaneous remission of experimental allergic encephalomyelitis. Eur J Immunol 28: 3893–3903PubMedCrossRefGoogle Scholar
  41. 41.
    Di Rosa F, Barnaba V (1998) Persisting viruses and chronic inflammation: understanding their relation to autoimmunity. Immunol Rev 164:17–27PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • F. Di Rosa
    • 1
  • V. Barnaba
    • 1
    • 2
  1. 1.Fondazione Andrea Cesalpino, I Clinica MedicaUniversità La SapienzaRomeItaly
  2. 2.Istituto Pasteur-Cenci BolognettiRomeItaly

Personalised recommendations