Optimizing the AV Delay in DDD Pacemakers: How Useful Is it?

  • S. Sermasi
  • M. Marconi
  • M. Mezzetti
Conference paper


Atrial systole contributes to end-systolic ventricular filling, optimizing the filling pressure as well as ensuring closure of the atrioventricular (AV) valve. It also contributes to the regulation of neurohumoral reflexes and the production of atrial natriuretic peptide (ANP) as well as to adjusting preload and afterload, to increasing inotropy, and to ventricular relaxation and myocardial oxygen consumption. The deleterious hemodynamic effects of loss of AV synchrony are well proven [1]. The atrial contribution to ventricular filling declines, and when sustained 1:1 retrograde atrial activation is maintained by ventricular pacing, atrial systole occurs against closed AV valves. The hemodynamic result is a retrograde direction of the hematic flux into pulmonary and systemic veins. Consequently, the mean right atrial and pulmonary wedge pressure increase significantly while the atrial contribution to left ventricular end-diastolic volume during each cardiac cycle is lacking [1, 2].


Atrial Natriuretic Peptide Atrial Contribution Atrial Systole First Degree Atrioventricular Block Atrioventricular Nodal Reentrant Tachycardia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asubel K, Furman S (1985) The pacemaker syndrome. Ann Intern Med 103:420–429Google Scholar
  2. 2.
    Sermasi S, Marconi M (1993) The pacemaker syndrome. G Ital Cardiol 23:485–493PubMedGoogle Scholar
  3. 3.
    Haas M, Fischer TA, Dietz R (1987) Is atrial distension the physiological stimulus for release of atrial natriuretic peptide? Lancet 28:1269–1270CrossRefGoogle Scholar
  4. 4.
    Millaire A, Ducloux G, De Groote O et al (1990) Le facteur auriculaire natrurétique. Etat actuel des connaissances et des implications en patologie cardiaque. Informat Cardiol 14:604–610Google Scholar
  5. 5.
    Stangl K, Weil J, Seitz K et al (1988) Influence of AV synchrony on the plasma levels of atrial natriuretic peptide (ANP) in patients with total AV block. Pacing Clin Electrophysiol 11:1176–1181PubMedCrossRefGoogle Scholar
  6. 6.
    Das G (1984) Pacemaker headache. Pacing Clin Electrophysiol 7:802–805PubMedCrossRefGoogle Scholar
  7. 7.
    Nishimura RA, Dersh BJ, Holmes DR Jr (1983) Outcome of dual-chamber pacing for the pacemaker syndrome. Mayo Clin Proc 58:452–456PubMedGoogle Scholar
  8. 8.
    Heldman D, Mulvihill D, Messenger J et al (1990) True incidence of pacemaker syndrome. Pacing Clin Electrophysiol 13:1742–1750PubMedCrossRefGoogle Scholar
  9. 9.
    Barold SS (1996) Indications for permanent cardiac pacing in first-degree AV block: class I, II or III? Pacing Clin Electrophysiol 19:747–751PubMedCrossRefGoogle Scholar
  10. 10.
    Shuller H, Brandt J (1991) The pacemaker syndrome: old and new causes. Clin Cardiol 14:336–340CrossRefGoogle Scholar
  11. 11.
    Wharton JM, Ellenbogen KA (1995) Atrioventricular conduction system disease. In: Ellenbogen KA, Kay GN, Wilkoff BL (eds) Clinical cardiac pacing. Saunders, Philadelphia, pp 304–320Google Scholar
  12. 12.
    Kim YH, O’Nunain S, Trouton T et al (1993) Pseudopacemaker syndrome following inadvertent fast pathway ablation for atrioventricular nodal reentrant tachycardia. J Cardiovasc Electrophysiol 4:178–182PubMedCrossRefGoogle Scholar
  13. 13.
    Nishimura RA, Hayes DL, Holmes DR et al (1995) Mechanism of hemodynamic improvement by dual-chamber pacing for severe left ventricular dysfunction: an acute Doppler and catheterization hemodynamic study. J Am Coll Cardiol 25:281–288PubMedCrossRefGoogle Scholar
  14. 14.
    Ishikawa T, Tamura K, Miyzaki N et al (1992) Diastolic mitral regurgitation in patients with first degree atrioventricular block. Pacing Clin Electrophysiol 15:1927–1931PubMedCrossRefGoogle Scholar
  15. 15.
    Haskel RJ, French WJ (1986) Optimum AV interval in dual-chamber pacemakers. Pacing Clin Electrophysiol 9:670–675CrossRefGoogle Scholar
  16. 16.
    Ovsyshcher I, Zimlichman R, Katz A et al (1993) Measurements of cardiac output by impedance cardiography in pacemaker patients at rest: effects of various atrioventricular delays. J Am Coll Cardiol 21:761–767PubMedCrossRefGoogle Scholar
  17. 17.
    Camous JP, Raybaud F, Dolisi C et al (1993) Interatrial conduction in patients undergoing AV stimulation: effects of increasing right atrial stimulation. Pacing Clin Electrophysiol 16:2082–2086PubMedCrossRefGoogle Scholar
  18. 18.
    Harper GR, Pina IL, KutaleK SP et al (1991) Intrinsic conduction maximizes cardiopulmonary performance in patients with dual-chamber pacemakers. Pacing Clin Electrophysiol 14:1787–1791PubMedCrossRefGoogle Scholar
  19. 19.
    Rosenqvist M, Isaaz K, Botvinik EH et al (1991) Relative importance of activation sequence compared to atrioventricular synchrony in left ventricula function. Am J Cardiol 67:148–156PubMedCrossRefGoogle Scholar
  20. 20.
    Jutzy RV, Feenstra L, Pai R et al (1992) Comparison of intrinsic versus paced ventricular function. Pacing Clin Electrophysiol 15:1919–1922PubMedCrossRefGoogle Scholar
  21. 21.
    Occhetta E, Rognoni G, Perucca A et al (1993) The functional and hemodynamic benefits of automatic atrioventricular interval delay in permanent atrial synchronized pacing. G Ital Cardiol 23:877–886PubMedGoogle Scholar
  22. 22.
    Sheppard RC, Ren JF, Ross J et al (1993) Doppler echocardiographic assessment of the hemodynamic benefits of rate adaptive AV delay during exercise in paced patients with complete heart block. Pacing Clin Electrophysiol 9:2157–2167CrossRefGoogle Scholar
  23. 23.
    Crepaz R, Pitsheider W, Zammarchi A et al (1991) Role of echo-Doppler in programming of sequential pacemakers. Evaluation of optimal atrioventricular delay in patients with normal or hypertrophic left ventricle. G Ital Cardiol 21:975–982PubMedGoogle Scholar
  24. 24.
    Fananapazir L, Cannon RO, Tripodi D et al (1992) Impact of dual-chamber permanent pacing in patients with obstructive cardiomyopathy with symptoms refractory to verapamil and beta-adrenergic blocker therapy. Circulation 85:2149–2161PubMedCrossRefGoogle Scholar
  25. 25.
    Jeanrenaud X, Goy JJ, Kappenberger L (1992) Effects of dual-chamber pacing in hypertrophic obstructive cardiomyopathy. Lancet 339:1318–1323PubMedCrossRefGoogle Scholar
  26. 26.
    Hochleitner M, Hortnagl H, Ng CK et al (1990) Usefulness of physiologic dual-chamber pacing in drug-resistant idiopathic dilatec cardiomyopathy. Am J Cardiol 66:198–202PubMedCrossRefGoogle Scholar
  27. 27.
    Hochleitner M, Hortnagl H, Hortnagl H et al (1992) Long-term efficacy of physiologic dual-chamber pacing in the treatment of end-state idiopathic dilated cardiomyopathy. Am J Cardiol 70:1313–1325CrossRefGoogle Scholar
  28. 28.
    Brecker SJD, Xiao H, Sparrow J et al (1992) Effects of dual-chamber pacing with short atrioventricular delay in dilated cardiomyopathy. Lancet 340:1308–1312PubMedCrossRefGoogle Scholar
  29. 29.
    Sermasi S, Marconi M, Mainardi MA (1993) Stimolazione cardiaca permanente: quanto è importante conservare la normale conduzione AV e sequenza di attivazione ventricolare? In: Piccolo E, Raviele A (eds) Aritmie cardiache. Centro Scientifico Editore, Torino, pp 472–478Google Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • S. Sermasi
    • 1
  • M. Marconi
    • 1
  • M. Mezzetti
    • 1
  1. 1.Dipartimento di Medicina, Unità Operativa di CardiologiaOspedale Infermi, AUSLRiminiItaly

Personalised recommendations