Advertisement

Risk Stratification for Serious Arrhythmic Events in Post-Infarction Patients

  • N. El-Sherif
  • G. Turitto
Conference paper

Abstract

In spite of recent improvement in overall cardiovascular mortality, posthospital mortality remains high in survivors of acute myocardial infarction (AMI). Approximately one third of late deaths in survivors of AMI are sudden and unexpected, and the risk of sudden death persists for years after the AMI [1, 2]. Prevention of sudden cardiac death (SCD), which in the majority of cases is due to malignant ventricular tachyarrhythmias (VT, defined as hypotensive ventricular tachycardia/ventricular fibrillation), remains a formidable clinical challenge in survivors of AMI. Management strategy of this major health care problem has centered over the years on two closely related aspects: (1) how to identify those at risk of SCD, and (2) what the best management modalities are — pharmacotherapy or the implantable cardioverter-defibrillator (ICD). Following recent publications of the results of several multicenter studies, pharmacotherapy — mainly antiarrhythmic drugs — has not proven so far to be an effective management modality for those at risk of SCD. This cleared the way for more widespread use of the ICD as the sole or main management modality. Primarily because of the high cost of the ICD, and the invasive nature of this therapeutic modality, the prophylactic use of the device for primary prevention of SCD did not gain momentum until recently. This aspect of management strategy for SCD is still in the clinical research domain, with several primary ICD prevention trials currently underway. However, this trend has highlighted the urgent need for more powerful risk stratification algorithms for SCD in this population.

Keywords

Heart Rate Variability Acute Myocardial Infarction Arrhythmic Event Arrhythmic Death Complex Ventricular Arrhythmia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    RouleauJL, Talajic M, Sussex B et al (1996) Myocardial infarction patients in the1980s - their risk factors, stratification and survival in Canada: The CanadianAssessment of Myocardial Infarction (CAMI) Study. J Am Coll Cardiol27:1119–1127PubMedCrossRefGoogle Scholar
  2. 2.
    De Vreede-Swagemakers JJM, Gorgels APM, Dubois-Arbouw WI et al (1997) Out-of-hospitalcardiac arrest in the 1990s: a population-based study in the Maastricht area onincidence, characteristics and survival. J Am Coll Cardiol 30:1500–1505PubMedCrossRefGoogle Scholar
  3. 3.
    MossAJ, HallWJ,Cannom DS etal(1996) Improved survival with an implanted defibrillator in patients withcoronary artery disease at high risk for ventricular arrhythmias. N Engl J Med35:1933–1940CrossRefGoogle Scholar
  4. 4.
    TheAntiarrhythmics Versus Implantable Defibrillators (AVID) Investigators (1997) Acomparison of antiarrhythmic drug therapy with implantable defibrillators inpatients resuscitated from non-fatal ventricular arrhythmias. N Engl J Med337:1576–1583CrossRefGoogle Scholar
  5. 5.
    BiggerJT, for the Coronary Artery Bypass Graft (CABG) Patch Trial Investigators(1997) Prophylactic use of implanted cardiac defibrillators in patients at highrisk for ventricular arrhythmias after coronary-artery bypass graft surgery. NEngl J Med 337:1569–1575CrossRefGoogle Scholar
  6. 6.
    The Multicenter Post-Infarction Research Group (1983) Risk stratification andsurvival after myocardial infarction. N Engl J Med 309:331–336CrossRefGoogle Scholar
  7. 7.
    KoberL, Torp-Pedersen C, Elming H, Burchardt H, on behalf of the TRACE Study Group(1997) Use of left ventricular ejection fraction or wall-motion score index inpredicting arrhythmic death in patients following an acute myocardialinfarction. Pacing Clin Electrophysiol 20:2553–2559PubMedCrossRefGoogle Scholar
  8. 8.
    KucharDL, Thornburn CW, Sammel NL (1987) Prediction of serious arrhythmic eventsafter myocardial infarction: signal averaged electrocardiogram, Holtermonitoring and radionuclide ventriculography. J Am Coll Cardiol 9:531–538PubMedCrossRefGoogle Scholar
  9. 9.
    El-SherifN, Ursell SN, BekheitS et al (1989)Prognostic value of the signal averaged ECG depends on the time of recording inthe postinfarction period. Am Heart J 118:256–264PubMedCrossRefGoogle Scholar
  10. 10.
    El-SherifN, Denes P, Katz R et al (1995) Definition of the best criteria of thetime-domain signal-averaged electrocardiogram for serious arrhythmic events inthe post-infarction period. J Am Coll Cardiol 25:908–914PubMedCrossRefGoogle Scholar
  11. 11.
    AhujaRK, Turitto G, Ibrahim B, Caref EB, El-Sherif N (1994) Combined time-domain andspectral turbulence analysis of the signal-averaged electrocardiogramGoogle Scholar
  12. improve itspredictive accuracy in post-infarction patients. J Electrocardiol27[Suppl]:202-206Google Scholar
  13. 12.
    VazquezR, Caref EB, Torres F, Reina M, Espina A, El-Sherif N (1999) Improveddiagnostic value of the combined time- and frequency-domain analysis of thesignal-averaged electrocardiogram after myocardial infarction. J Am CollCardiol 33:385–394CrossRefGoogle Scholar
  14. 13.
    BaronHV, Lesh MD (1996) Autonomic nervous system and sudden cardiac death.J Am Coll Cardiol 27:1053–1060CrossRefGoogle Scholar
  15. 14.
    KleigerRE, Miller JP, Bigger JT Jr, Moss AJ, and the Multicenter Post-InfarctionResearch Group (1987) Decreased heart rate variability and its association withincreased mortality after acute myocardial infarction. Am J Cardiol 59:256–262PubMedCrossRefGoogle Scholar
  16. 15.
    Bigger JT, Steinman RC, Rolnitzky LM, Fleiss JL,Albrecht P, Cohen RJ (1996) Power law behavior of RR-interval variabilityin healthy middle-aged persons, patients with recent acute myocardialinfarction, and patients with heart transplants. Circulation 93:2142–2151PubMedCrossRefGoogle Scholar
  17. 16.
    LaRovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ, for the ATRAMI (AutonomieToneand Reflexes After Myocardial Infarction) Investigators (1998) Baroreflexsensitivity and heart-rate variability in prediction of total cardiac mortalityafter myocardial infarction. Lancet 351:478–484CrossRefGoogle Scholar
  18. 17.
    TaskForce of the European Society of Cardiology and the North American Society ofPacing and Electrophysiology (1996) Heart rate variability. Standards ofmeasurement, physiological interpretation, and clinical use. Circulation93:1143–1165CrossRefGoogle Scholar
  19. 18.
    Dekker JM, Schouten EG, Klootwijk P, Pool J, Swenne CA,Kromhout D (1997) Heart ratevariability from short electrocardiographic recordings predict mortality fromall causes in middle-aged and elderly men. Am J Epidemiol 145:899–908PubMedCrossRefGoogle Scholar
  20. 19.
    LanzaGA, Guido V, Galeazzi N et al (1998) Prognostic role of heart rate variabilityin patients with a recent acute myocardial infarction. Am J Cardiol82:1323–1328PubMedCrossRefGoogle Scholar
  21. 20.
    AhnveS, Gilpin E, Madsen EB, Frolicher V, Henning H, Ross J (1984)Prognostic importance of QT interval at discharge after acute myocardialinfarction: a multicenter study of 865 patients. Am Heart J 108:395–400PubMedCrossRefGoogle Scholar
  22. 21.
    HighamPD, Campbell RFW (1994) QT dispersion. Br Heart J 71:508–510CrossRefGoogle Scholar
  23. 22.
    DayCP, McComb JM, Campbell RFW (1990) QT dispersion: an indication of arrhythmiarisk in patients with long QT intervals. Br Heart J 63:342–344PubMedCrossRefGoogle Scholar
  24. 23.
    ZabelM, KlingenhebenT,Franz MR, HohnloserSH(1998) Assessment of QT dispersion for prediction of mortality or arrhythmicevents after myocardial infarction. Results of a prospective, long-termfollow-up study. Circulation 97:2543–2550PubMedCrossRefGoogle Scholar
  25. 24.
    Oikarinen L, Toivonen L, Viitasalo M (1998) Electrocardiographic measures ofventricular repolarization: dispersion in patients with coronary artery diseasesusceptible to ventricular fibrillation. Heart 79:554–559PubMedGoogle Scholar
  26. 25.
    El-Sherif N (1996) T-wave alternans. A marker of vulnerability to ventriculartachyarrhythmias. In: Raviele A (ed) Cardiac arrhythmias 1995. Springer, Milan,pp 12–16CrossRefGoogle Scholar
  27. 26.
    RosenbaumDS,Jackson LE, Smith JM et al (1994) Electrical alternans and vulnerability toventricular arrhythmias. N Engl J Med 330:235–241PubMedCrossRefGoogle Scholar
  28. 27.
    ChinushiM, Restivo M, Caref EB, El-Sherif N (1998) Electrophysiological basis of thearrhythmogenicity of QT/T alternans in the long QT syndrome. Tridimensionalanalysis of the kinetics of cardiac repolarization. Circ Res 83:614–628PubMedCrossRefGoogle Scholar
  29. 28.
    EstesNAM, Michaud G, Zipes DP et al (1997) Electrical alternans duringrest and exercise as a predictor of vulnerability to ventricular arrhythmias.Am J Cardiol 80:1314–1318PubMedCrossRefGoogle Scholar
  30. 29.
    GoldMR, Bloomfield DM, Anderson KP et al (1998) T wave alternanspredicts arrhythmia vulnerability in patients undergoing electrophysiologystudy. Circulation 98[Suppl I]:647 (abstr)Google Scholar
  31. 30.
    HohnloserSH, KlingenhebenT,Li Y G, ZabelM,Peetermans J, Cohen RJ (1998) T-wave alternans as a predictor of recurrentventricular tachyarrhythmias in ICD recipients: prospective comparison withconventional risk markers. J Cardiovasc Electrophysiol 9:1258–1268PubMedCrossRefGoogle Scholar
  32. 31.
    Turitto G, Caref EB, Pedalino R et al (1998) Comparison of heart rate atonset of T-wave alternans in normals and patients with malignant ventriculartachyarrhythmias. Circulation 98[suppl I]:647 (abstr)Google Scholar
  33. 32.
    RoyD, MarchandE,Theroux P, Waters DD, Pelletier GB, Bourassa MG (1985) Programmedventricular stimulation in survivors of an acute myocardial infarction.Circulation 72:487–494PubMedCrossRefGoogle Scholar
  34. 33.
    IesakaY, Nogami A, Aonuma K et al (1990) Prognostic significance of sustainedmonomorphic VT induced by programmed ventricular stimulation using up to tripleextrastimuli in survivors of acute myocardial infarction. Am J Cardiol65:1057–1063PubMedCrossRefGoogle Scholar
  35. 34.
    BourkeJP, Richards ADB, Ross DL, Wallace EM, McGuire MA, Uther JB (1991) Routineprogrammed electrical stimulation in survivors of acute myocardial infarctionfor prediction of spontaneous ventricular tachyarrhythmias during follow-up:results, optimal stimulation protocol and cost-effective screening. J Am CollCardiol 18:780–788CrossRefGoogle Scholar
  36. 35.
    OikarinenL, Paavola M, Montonen J, Viitasalo M et al (1998) Magnetocardiographic QTinterval dispersion in postmyocardial infarction patients with sustainedventricular tachycardia: validation of automated QT measurements. Pacing ClinElectrophysiol 21:1934–1942CrossRefGoogle Scholar
  37. 36.
    Hubley-KozeyCL, Mitchell LB, Gardner MJ et al (1995) Spatial features inbodysurface potential maps can identify patients with a history of sustainedventricular tachycardia. Circulation 92:1825–1838PubMedCrossRefGoogle Scholar
  38. 37.
    AtigaWl, Calkins H, Lawrence JH et al (1998) Beat-to-beat repolarizationlability identifies patients at risk for sudden cardiac death. J CardiovascElectrophysiol 9:899–908CrossRefGoogle Scholar
  39. 38.
    DabrovskiA, Kramarz E, Piotrowicz R (1997) Low variability of cycle lengths innonsustained ventricular tachycardia as an independent predictor of mortalityafter myocardial infarction. Am J Cardiol 80:1347–1350CrossRefGoogle Scholar
  40. 39.
    Copie X, Hnatkova K, Staunton A, Fei L, Camm AJ, Malik M (1996) Predictive power of increasedheart rate versus depressed left ventricular ejection fraction and heart ratevariability for risk stratification after myocardial infarction: results of atwoyear follow-up study. J Am Coll Cardiol 27:270–276PubMedCrossRefGoogle Scholar
  41. 40.
    HaiderAW, Larson MG, Benjamin EJ, Levy D (1998) Increased left ventricular mass andhypertrophy are associated with increased risk for sudden death. J Am CollCardiol 32:1454–1459CrossRefGoogle Scholar
  42. 41.
    RedwoodSR, Odemuyiwa O, Hnatkova K et al (1997) Selection of dichotomy limitsfor multifactorial prediction of arrhythmic events and mortality in survivorsof acute myocardial infarction. Eur Heart J 18:1278–1287PubMedCrossRefGoogle Scholar
  43. 42.
    MossAJ, Cannom DS, Daubert JP et al, for the MADIT-II Investigators(1999) Multicenter Automatic Defìbrillator Implantation Trial II (MADIT-II):design and clinical protocol. Ann Noninvasive Electrocardiol 4:83–91CrossRefGoogle Scholar
  44. 43.
    BardyGH, Lee KL, Mark DB and the SCD-HeFT Pilot Investigators (1997) The SuddenCardiac Death in Heart Failure Trial: pilot study. Pacing Clin Electrophysiol20:1148 (abstr)Google Scholar
  45. 44.
    Raviele A, Bongiorni MG, Brignole M et al (1999) Whichstrategy is “best” after myocardial infarction? The beta-blockerstrategy plus implantable cardioverter defìbrillator trial: Rationale and studydesign. Am J Cardiol 83(5B):104D–111DPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • N. El-Sherif
    • 1
    • 2
  • G. Turitto
    • 1
    • 2
  1. 1.Cardiology Division, Department of MedicineState University of New YorkBrooklynUSA
  2. 2.Health Science Center and Veterans Affairs Medical CenterBrooklynUSA

Personalised recommendations