Brugada and Long QT Syndrome Are Two Different Diseases: True or False?

  • S. G. Priori
  • L. Crotti
Conference paper


Despite the fact that most events of cardiac arrest (CA) occur in individuals with structural heart disease, a significant percentage (estimated around 3%–8% of CA) of young subjects who die suddenly have no demonstrable structural heart disease at autopsy. The term “idiopathic” ventricular fibrillation (IVF) has been adopted to refer to this group of individuals. The world’s largest series of individuals resuscitated from CA and labeled as affected by IVF has been col- lected in a registry called UCARE [1] by a group of European investigators act- ing under the auspices of the European Society of Cardiology. According to the UCARE’s experience [2] based on 153 individuals followed for a mean follow- up of 5 years, the risk of recurrence of CA in IVF is 25%–30%. Accordingly the use of implantable cardiac defibrillator (ICD) appear justified in this popula- tion of patients irrespective of the outcome of programmed electrical stimula- tion. The hypothesis that CA in IVF survivors may be the “early” manifestation of a disease that will progress over time is not supported by the evidence that only a minority (5%) of these individuals develop an overt structural heart dis- ease at follow-up.


Structural Heart Disease Brugada Syndrome Right Bundle Branch Block Implantable Cardiac Defibrillator Transient Outward Current 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Priori SG, Borggrefe M, Camm AJ, Hauer NW, Klein H, Kuck KH, Schwartz PJ, Touboul P, Wellens HJJ (1992) Unexplained cardiac arrest. The need for a prospecti-ve registry. Eur Heart J 13:1445–1446Google Scholar
  2. 2.
    Priori SG, Paganini V (1997) Idiopathic ventricular fibrillation: epidemiology, pathophysiology, primary prevention, immediate evaluation and management, long-term evaluation and management, experimental and theoretical develop-ments. Cardiac Electrophysiol Review 1:244–247CrossRefGoogle Scholar
  3. 3.
    Priori SG, Barhanin J, Hauer RNW, Haverkamp W, Habo JJ, Kleber AG, McKenna WJ, Roden DM, Rudy Y, Schwartz K, Schwartz PJ, Towbin JA, Wilde AM (1999) Genetic and molecular basis of cardiac arrhythmias: impact on clinical manage-ment. (part I, II) Circulation 99:518–528Google Scholar
  4. 4.
    Schwartz PJ, Locati EH, Napolitano C, Priori SG (1995) The long QT syndrome. In: Zipes DP, Jalife J (eds) Cardiac electrophysiology. From cell to bedside (2nd edn). WB. Saunders Philadelphia, pp 788–811Google Scholar
  5. 5.
    Brugada J, Brugada R, Brugada P (1998) Right bundle branch block, ST segment elevation in leads V1-V3: a marker for sudden death in patients without demon-strable structural heart disease. Circulation 97:457–460PubMedCrossRefGoogle Scholar
  6. 6.
    Romano C, Gemme G, Pongiglione R (1963) Aritmie cardiache rare dell’età pedia-trica. La Clin Pediatr 45:656–683Google Scholar
  7. 7.
    Ward OC (1964) A new familial cardiac syndrome in children. J Irish Med Assoc 54:103–106Google Scholar
  8. 8.
    Yiang C, Atkinson D, Towbin JA, Splawski I, Lehmann MH, Li H, Timothy K, Taggart RT, Schwartz PJ, Vincent GM, Moss AJ, Keating MT (1994) Two long QT syndrome loci map to chromosomes 3 and 7 with evidence for further heterogeneity. Nat Genet 8:141–147CrossRefGoogle Scholar
  9. 9.
    Wang Q, Shen J, Splaswki I, Atkinson D, Li Z, Robinson JL, Moss AJ, Towbin JA, Keating MT (1995) SCN5A mutations associated with an inherited cardiac arrhyth-mia, long QT syndrome. Cell 80:805–811PubMedCrossRefGoogle Scholar
  10. 10.
    Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT (1995) A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80:795–803PubMedCrossRefGoogle Scholar
  11. 11.
    Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, Van Raay TJ, Shen J, Timothy KW, De Jager T, Schwartz PJ, Towbin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT (1996) Positional cloning of a novel potassium chan-nel gene: KvLQT1 mutations cause cardiac arrhythmias. Nat Genet 12:17–23PubMedCrossRefGoogle Scholar
  12. 12.
    Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996) Coassembly of KvLQT1 and minK (IsK) proteins to form cardiac Iks potas-sium channel. Nature 384:78–80CrossRefGoogle Scholar
  13. 13.
    Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) KvLQT1 and IsK (minK) proteins associate to form the Iks cardiac potassium current. Nature 384:78–80PubMedCrossRefGoogle Scholar
  14. 14.
    Brugada P, Brugada J (1992) Right bundle branch block, persistent ST segment ele-vation and sudden cardiac death: a distinct clinical and electrocardiographic syn-drome. J Am Coll Cardiol 20:1391–1396PubMedCrossRefGoogle Scholar
  15. 15.
    Martini B, Corrado D, Nava A, Thiene G (1997) Syndrome of right bundle branch block, ST-segment elevation and sudden death. Evidence of an organic substrate. In: Nava A, Rossi L, Thiene G eds: Arrhythmogenic right ventricular cardiomyo-pathy/dysplasia. Elsevier, Amsterdam, pp 438–453Google Scholar
  16. 16.
    Chen Q, Kirsch GE, Zhang D, Brugada J, Brugada R, Brugada P, Potenza D, Moya A, Borggrefe M, Breithardt G, Ortiz-Lopez R, Wang Z, Antzelevitch C, O’Brien RE, Schulze-Bahr E, Keating M, Towbin JA, Wang Q (1998) Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392:293–295PubMedCrossRefGoogle Scholar
  17. 17.
    Gellens ME, George AL Jr, Chen L, Chahine M, Horn R, Barchi RL, Kallen RG (1992) Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Nat Acad Sci 89:554–558PubMedCrossRefGoogle Scholar
  18. 18.
    Wang Q, Shen J, Li Z, Timoty K, Vincent GM, Priori SG, Schwartz PJ, Keating MT (1995) Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum Mol Gen 4:1603–1607PubMedCrossRefGoogle Scholar
  19. 19.
    Bennet PB, Yazawa K, Makita N, George AL (1995) Molecular mechanism for an inherited cardiac arrhythmia. Nature 376:683–685CrossRefGoogle Scholar
  20. 20.
    Dumaine R, Wang Q, Keating MT, Hartmann HA, Schwartz PJ, Brown AM, Kirsch GE (1996) Multiple mechanisms of sodium channel-linked long QT syndrome. Circ Res 78:916–924PubMedCrossRefGoogle Scholar
  21. 21.
    Wattanasirichaigoon D, Vasely MR, Duggal P, Beggs AH (1997) Mutations of SCN5A are infrequent in patients with long QT syndrome. Circulation 97[Suppl]:56 (abstr)Google Scholar
  22. 22.
    Benhorin J, Goldmit M, MacCluer J, Blangero J, Goffen R, Leibovitch A, Rahat A, Wang Q, Medina A, Towbin J, Karem B (1997) Identification of a new SCN5A muta-tion associated with the long QT syndrome. Hum Genet: 153 (on line)Google Scholar
  23. 23.
    An RH, Wang XL, Kerem B, Benhorin J, Medina A, Goldmit M, Kass RS (1998) Novel LQT3 mutation affects Na+ channel activity through interaction between alpha and betal subunits. Circ Res 83:141–146CrossRefGoogle Scholar
  24. 24.
    Alshinawi C, Mannens M, Wilde A (1998) Mutations in the human cardiac sodium channel gene (SCN5A) in patients with Brugadaís syndrome. Eur Heart J 19 [Suppl]:78 (abstr)Google Scholar
  25. 25.
    Yan GX, Antzelevitch C (1996) Cellular basis for the electrocardiographic J wave. Circulation 93:372–379PubMedCrossRefGoogle Scholar
  26. 26.
    Litovsky SH, Antzelevitch C (1989) Rate dependance of action potential duration and refractoriness in canine ventricular endocardium differs from that of epicar-dium: role of transient outward current. J Am Coll Cardiol 14:1053–1066PubMedCrossRefGoogle Scholar
  27. 27.
    Di Diego JM, Sun ZQ, Antzelevitch C (1996) Ito and action potential notch are smaller in left vs. right canine ventricular epicardium. Am J Physiol 271:H548–H561PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • S. G. Priori
    • 1
  • L. Crotti
    • 1
  1. 1.Laboratori di Cardiologia MolecolareFondazione Salvatore Maugeri, IRCCSPaviaItaly

Personalised recommendations