Skip to main content

Transvalvular Impedance: Does It Allow Automatic Capture Detection?

  • Conference paper
Cardiac Arrhythmias 2003

Abstract

Hemodynamic sensors of implantable pacemakers are designed to record the intensity of myocardial mechanical activity to allow estimation of the current state of the inotropic cardiac regulation [1]. This information is generally used to drive a rate-responsive system, relying on the physiological correlation between cardiac rate and contractility [2, 3]. However, the assessment of ventricular contraction based on hemodynamic evidence might also have important applications in the surveillance of pacing effectiveness [4]. Such a control system would enhance patient safety and allow a reduction in the stimulation energy, increasing the lifetime of the implanted device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Daum DR, Jones BR, Lang DJ (2000) Hemodynamic sensors. Am J Cardiol 86 (Suppl):95K–100K

    Article  PubMed  CAS  Google Scholar 

  2. Chirife R, Tentori MC, Mazzetti H et al (2001) Hemodynamic sensors: are they all the same? In: Raviele A (ed) Cardiac arrhythmias 2001. Springer-Verlag Italia, Milan, pp 566–575

    Google Scholar 

  3. Occhetta E, Bortnik M, Francalacci G et al (2001) How reliable and effective are hemodynamic sensors to correct chronotropic incompetence? In: Raviele A (ed) Cardiac arrhythmias 2001. Springer-Verlag Italia, Milan, pp 586–594

    Google Scholar 

  4. Alt E, Kriegler C, Fotuhi P et al (1992) Feasibility of using intracardiac impedance measurements for capture detection. Pacing Clin Electrophysiol 15:1873–1879

    Article  PubMed  CAS  Google Scholar 

  5. Di Gregorio F, Morra A, Finesso M, Bongiorni MG (1996) Transvalvular impedance (TVI) recording under electrical and pharmacological cardiac stimulation. Pacing Clin Electrophysiol 19:1689–1693

    Article  PubMed  Google Scholar 

  6. Morra A, Panarotto D, Santini P, Di Gregorio F (1997) Transvalvular impedance (TVI) sensing: a new way toward the hemodynamic control of cardiac pacing. In: Vardas PE (ed) Europace ′97. Monduzzi Editore, Bologna, pp 529–533

    Google Scholar 

  7. Gasparini M, Curnis A, Mantica M et al (2001) Hemodynamic sensors: what clinical value do they have in heart failure? In: Raviele A (ed) Cardiac arrhythmias 2001. Springer-Verlag Italia, Milan, pp 576–585

    Google Scholar 

  8. Bongiorni MG, Soldati E, Arena G et al (2001) Hemodynamic sensors: what clinical value do they have in chronotropic incompetence? In: Raviele A (ed) Cardiac arrhythmias 2001. Springer-Verlag Italia, Milan, pp 595–601

    Google Scholar 

  9. Di Gregorio F, Curnis A, Pettini A et al (2002) Trans-valvular impedance (TVI) in the hemodynamic regulation of cardiac pacing. In: Mitro P, Pella D, Rybár R, Valolik G (eds) Cardiovascular diseases 2002. Monduzzi Editore, Bologna, pp 53–57

    Google Scholar 

  10. Bongiorni MG, Soldati E, Arena G et al (1997) Transvalvular impedance as a marker of cardiac activity. In: Vardas PE (ed) Europace ′97. Monduzzi Editore, Bologna, pp 525–528

    Google Scholar 

  11. Velimirovic DB, Calovic Z, Di Gregorio F et al (1998) Transvalvular impedance as a tool for atrial and ventricular capture detection. In: Santini M (ed) VIII International Symposium on Progress in Clinical Pacing’free papers. CEPI, Roma, pp 81–83

    Google Scholar 

  12. Boriani G, Biffi M, Branzi A et al (2000) Benefits in projected pacemaker longevity and in pacing related costs conferred by automatic threshold tracking. Pacing Clin Electrophysiol 23:1783–1787

    PubMed  CAS  Google Scholar 

  13. Simeon L, Duru F, Fluri M et al (2000) The impact of automatic threshold tracking on pulse generator longevity in patients with different chronic stimulation threshold. Pacing Clin Electrophysiol 23:1788–1791

    PubMed  CAS  Google Scholar 

  14. Clarke M, Liu B, Schüller H et al (1998) Automatic adjustment of pacemaker stimulation output correlated with continuously monitored capture thresholds: a multicen-ter study. Pacing Clin Electrophysiol 21:1567–1575

    Article  PubMed  CAS  Google Scholar 

  15. Lau C, Cameron DA, Nishimura SC et al (2000) A cardiac evoked response algorithm providing threshold tracking: a North American multicenter study. Pacing Clin Electrophysiol 23:953–959

    Article  PubMed  CAS  Google Scholar 

  16. Duru F, Bauersfeld U, Schüller H et al (2000) Threshold tracking pacing based on beat by beat evoked response detection: clinical benefits and potential problems. J Interv Card Electrophysiol 4:511–522

    Article  PubMed  CAS  Google Scholar 

  17. Candinas R, Liu B, Leal J et al (2002) Impact of fusion avoidance on performance of the automatic threshold tracking feature in dual chamber pacemakers: a multicenter prospective randomized study. Pacing Clin Electrophysiol 25:1540–1545

    Article  PubMed  Google Scholar 

  18. Bennett T, Sharma A, Sutton R et al (1992) Development of a rate adaptive pacemaker based on the maximum rate-of-rise of right ventricular pressure (RV dP/dtmax). Pacing Clin Electrophysiol 15:219–234

    Article  PubMed  CAS  Google Scholar 

  19. Rickards AF, Bombardini T, Plicchi G et al (1996) An implantable intracardiac accele-rometer for monitoring myocardial contractility. Pacing Clin Electrophysiol 19:2066–2071

    Article  PubMed  CAS  Google Scholar 

  20. Chirife R, Ortega DF, Salazar A (1993) Feasibility of measuring relative right ventricular volumes and ejection fraction with implantable rhythm control devices. Pacing Clin Electrophysiol 16:1673–1683

    Article  PubMed  CAS  Google Scholar 

  21. Osswald S, Cron T, Gradel C et al (2000) Closed-loop stimulation using intracardiac impedance as a sensor principle: correlation of right ventricular dP/dt max and intracardiac impedance during dobutamine stress test. Pacing Clin Electrophysiol 23:1502–1508

    Article  PubMed  CAS  Google Scholar 

  22. Pinski SL, Trohman RG (2002) Interference in implanted cardiac devices, part I. Pacing Clin Electrophysiol 25:1367–1381

    Article  PubMed  Google Scholar 

  23. Plicchi G, Marcelli E, Parlapiano M et al (2002) PEA I and PEA II based implantable haemodynamic monitor: pre clinical studies in sheep. Europace 4:49–54

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Italia

About this paper

Cite this paper

Bongiorni, M.G. et al. (2004). Transvalvular Impedance: Does It Allow Automatic Capture Detection?. In: Raviele, A. (eds) Cardiac Arrhythmias 2003. Springer, Milano. https://doi.org/10.1007/978-88-470-2137-2_97

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2137-2_97

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2177-8

  • Online ISBN: 978-88-470-2137-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics