Skip to main content

Hemodynamic Sensors: Their Impact in Clinical Practice

  • Conference paper
Cardiac Arrhythmias 2003

Abstract

The need to adjust pacing rate to changing metabolic conditions has led to the development of different sensing systems that integrate the detection of atrial and ventricular electrical signals in permanent pacemakers [1]. All sensors currently available in the clinical setting assess the patient’s metabolic demand indirectly. This is the case for activity sensors, which generally detect the intensity of body motion by an accelerometer, as well as for physiological sensors, which are sensitive to cardiac or respiratory parameters physiologically correlated to the cardiac rate. The activity sensors usually show good sensitivity and prompt rate-response, but may lack specificity, since they cannot distinguish between active and passive motion. Respiratory sensors are more specific, but they show a slow response, resulting in little sensitivity towards the rapid, small changes in a patient’s activity which normally occur in daily life [2]. Cardiac sensors have to present the best compromise between sentivity and speciaficity, since the different aspects of cardiac function are regulated at the same time by the same controller, the autonomic nervous system (ANS). In patients with chronotropic incompetence, a pacemaker would restore normal rate control on the basis of relative changes in the inotropic, dromotropic, or bathmotropic regulation of the heart [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lau CP (1993) Rate adaptive cardiac pacing: single and dual chamber. Futura, Mount Kisco,NY

    Google Scholar 

  2. Rossi P (1987) Rate responsive pacing: biosensor reliability and physiological sensitivity. Pacing Clin Electrophysiol 10:454–466

    Article  PubMed  CAS  Google Scholar 

  3. Occhetta E, Bortnik M, Francalacci G et al (2001) How reliable and effective are hemodynamic sensors to correct chronotropic incompetence? In: Raviele A (ed) Cardiac arrhythmias 2001. Springer, Milan, pp 586–594

    Google Scholar 

  4. Baig MW, Wilson J, Boute W et al (1989) Improved pattern of rate responsiveness with dynamic slope setting for the QT sensing pacemaker. Pacing Clin Electrophysiol 12:311–320

    Article  PubMed  CAS  Google Scholar 

  5. Pichelmaier AM, Braile D, Ebner E et al (1992) Autonomic nervous system controlled closed loop cardiac pacing. Pacing Clin Electrophysiol 15:1787–1791

    Article  Google Scholar 

  6. Occhetta E, Francalacci G, Perucca A et al (1996) Improving exercise tolerance efficiently: how much sensor driven pacing is required? In: Santini M (ed) Progress in clinical pacing. Rome, pp 197–203

    Google Scholar 

  7. Bennett T, Sharma A, Sutton R et al (1992) Development of a rate adaptive pacemaker based on the maximum rate-of-rise of right ventricular pressure (RV dP/dtmax). Pacing Clin Electrophysiol 15:219–234

    Article  PubMed  CAS  Google Scholar 

  8. Daum DR, Jones BR, Lang DJ (2000) Hemodynamic sensors. Am J Cardiol 86(Suppl):95K–100K

    Article  PubMed  CAS  Google Scholar 

  9. Rickards AF, Bombardini T, Plicchi G et al (1996) An implantable intracardiac accele-rometer for monitoring myocardial contractility. Pacing Clin Electrophysiol 19:2066–2071

    Article  PubMed  CAS  Google Scholar 

  10. Osswald S, Cron T, Gradel C et al (2000) Closed-loop stimulation using intracardiac impedance as a sensor principle: correlation of right ventricular dP/dtmax and intracardiac impedance during dobutamine stress test. Pacing Clin Electrophysiol 23:1502–1508

    Article  PubMed  CAS  Google Scholar 

  11. Langenfeld H, Krein A, Kirstein M et al (1998) Peak endocardial acceleration based clinical testing of the “BEST” DDDR pacemaker. Pacing Clin Electrophysiol 21:2187–2191

    Article  PubMed  CAS  Google Scholar 

  12. Clementy J, Kobeissi A, Garrigue S et al (2000) Validation by serial standardized testing of a new rate-responsive pacemaker sensor based on variations in myocardial contractility. Europace 3:124–131

    Article  Google Scholar 

  13. Padeletti L, Perna AM, Michelucci A et al (1998) Contractility and peak endocardial acceleration (PEA) during experimental coronary occlusion. Arch Coeur Vaisseaux Cardiostim 98:17–3 (abstract)

    Google Scholar 

  14. Plicchi G, Marcelli E, Parlapiano M et al (2002) PEA I and PEA II based implantable haemodynamic monitor: preclinical studies in sheep. Europace 4:49–54

    Article  PubMed  CAS  Google Scholar 

  15. Schaldach M, Hutten H (1992) Intracardiac impedance to determine sympathetic activity in rate responsive pacing. Pacing Clin Electrophysiol 15:1778–1786

    Article  PubMed  CAS  Google Scholar 

  16. Witte J, Pichelmaier AM, Ebner E et al (1996) ANS controlled rate adaptive pacing. A clinical evaluation. Eur J Card Pacing Electrophysiol 6:53–59

    Google Scholar 

  17. Griesbach L, Gestrich B, Wojciechowski D et al (2003) Clinical performance of automatic closed-loop stimulation systems. Pacing Clin Electrophysiol 26(Pt.I):1432–1437

    Article  PubMed  Google Scholar 

  18. Chirife R, Ortega DF, Salazar A (1993) Feasibility of measuring relative right ventricular volumes and ejection fraction with implantable rhythm control devices. Pacing Clin Electrophysiol 16:1673–1683

    Article  PubMed  CAS  Google Scholar 

  19. Chirife R, Tentori MC, Mazzetti H et al (2001) Hemodynamic sensors: are they all the same? In: Raviele A(ed) Cardiac arrhythmias. Springer, Milan, pp 566–575

    Google Scholar 

  20. Di Gregorio F, Morra A, Finesso M et al (1996) Transvalvular impedance (TVI) recording under electrical and pharmacological cardiac stimulation. Pacing Clin Electrophysiol 19(Pt II):1689–1693

    Article  PubMed  Google Scholar 

  21. Gasparini M, Curnis A, Mantica M et al (2001) Hemodynamic sensors: what clinical value do they have in heart failure? In: Raviele A (ed) Cardiac arrhythmias. Springer, Milan, pp 576–585

    Google Scholar 

  22. Bongiorni MG, Soldati E, Arena G et al (2001) Hemodynamic sensors: what clinical value do they have in chronotropic incompetence? In: Raviele A (ed) Cardiac arrhythmias 2001. Springer, Milan, pp 595–601

    Google Scholar 

  23. Di Gregorio F, Curnis A, Pettini A et al (2002) Trans-valvular impedance (TVI) in the hemodynamic regulation of cardiac pacing. In: Mitro P, Pella D, Rybár R, Valocik G (eds) Cardiovascular diseases 2002. Monduzzi, Bologna, pp 53–57

    Google Scholar 

  24. Gasparini G, Curnis A, Mascioli G et al (2003) Clinical test of a pacing device driven by trans-valvular impedance. Pacing Clin Electrophysiol 26 (2-Pt II): S204 (abstract)

    Google Scholar 

  25. Deharo JC, Peyre JP, Ritter PH et al (1998) Treatment of malignant primary vasode-pressive neurocardiogenic syncope with a rate responsive pacemaker driven by heart contractility. Pacing Clin Electrophysiol 21:2688–2690

    Article  PubMed  CAS  Google Scholar 

  26. Occhetta E, Bortnik M, Vassanelli C et al (2003) The DDDR closed loop stimulation for the prevention of vasovagal syncope: results from the INVASY prospective feasibility registry. Europace 5:153–162.

    Article  PubMed  CAS  Google Scholar 

  27. Padeletti L, Porciani MC, Ritter P et al (2000) Atrioventricular interval optimization in the right atrial appendage and interatrial septum pacing: a comparison between echo and peak endocardial acceleration measurements. Pacing Clin Electrophysiol 23(11-Ptl):1618–1622

    Article  PubMed  CAS  Google Scholar 

  28. Ravazzi AP, Diotallevi P, Provera MF et al (2001) AV delay optimization using ventricular intracardiac impedance. Europace 2 [Suppl C]:C26 (abstract)

    Google Scholar 

  29. Bordachar P, Garrigue S, Reuter S et al (2000) Hemodynamic assessment of right, left, and biventricular pacing by peak endocardial acceleration and echocardiography in patients with end-stage heart failure. Pacing Clin Electrophysiol 23(11-Pt II):1726–1730

    PubMed  CAS  Google Scholar 

  30. Bocchiardo M, Caponi D, Di Donna P et al (2003) Optimization of resynchronization therapy by intracardiac ventricular impedance. In: Gulizia M (ed) New advances in heart failure and atrial fibrillation. Springer, Milan, pp 411–415

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Italia

About this paper

Cite this paper

Occhetta, E., Magnani, A., Bortnik, M., Francalacci, G., Di Gregorio, F., Vassanelli, C. (2004). Hemodynamic Sensors: Their Impact in Clinical Practice. In: Raviele, A. (eds) Cardiac Arrhythmias 2003. Springer, Milano. https://doi.org/10.1007/978-88-470-2137-2_94

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2137-2_94

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2177-8

  • Online ISBN: 978-88-470-2137-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics