Hemodynamic Sensors: Their Impact in Clinical Practice

  • E. Occhetta
  • A. Magnani
  • M. Bortnik
  • G. Francalacci
  • F. Di Gregorio
  • C. Vassanelli
Conference paper


The need to adjust pacing rate to changing metabolic conditions has led to the development of different sensing systems that integrate the detection of atrial and ventricular electrical signals in permanent pacemakers [1]. All sensors currently available in the clinical setting assess the patient’s metabolic demand indirectly. This is the case for activity sensors, which generally detect the intensity of body motion by an accelerometer, as well as for physiological sensors, which are sensitive to cardiac or respiratory parameters physiologically correlated to the cardiac rate. The activity sensors usually show good sensitivity and prompt rate-response, but may lack specificity, since they cannot distinguish between active and passive motion. Respiratory sensors are more specific, but they show a slow response, resulting in little sensitivity towards the rapid, small changes in a patient’s activity which normally occur in daily life [2]. Cardiac sensors have to present the best compromise between sentivity and speciaficity, since the different aspects of cardiac function are regulated at the same time by the same controller, the autonomic nervous system (ANS). In patients with chronotropic incompetence, a pacemaker would restore normal rate control on the basis of relative changes in the inotropic, dromotropic, or bathmotropic regulation of the heart [3].


Stroke Volume Right Ventricle Normal Rate Control Chronotropic Incompetence Contraction Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lau CP (1993) Rate adaptive cardiac pacing: single and dual chamber. Futura, Mount Kisco,NYGoogle Scholar
  2. 2.
    Rossi P (1987) Rate responsive pacing: biosensor reliability and physiological sensitivity. Pacing Clin Electrophysiol 10:454–466PubMedCrossRefGoogle Scholar
  3. 3.
    Occhetta E, Bortnik M, Francalacci G et al (2001) How reliable and effective are hemodynamic sensors to correct chronotropic incompetence? In: Raviele A (ed) Cardiac arrhythmias 2001. Springer, Milan, pp 586–594Google Scholar
  4. 4.
    Baig MW, Wilson J, Boute W et al (1989) Improved pattern of rate responsiveness with dynamic slope setting for the QT sensing pacemaker. Pacing Clin Electrophysiol 12:311–320PubMedCrossRefGoogle Scholar
  5. 5.
    Pichelmaier AM, Braile D, Ebner E et al (1992) Autonomic nervous system controlled closed loop cardiac pacing. Pacing Clin Electrophysiol 15:1787–1791CrossRefGoogle Scholar
  6. 6.
    Occhetta E, Francalacci G, Perucca A et al (1996) Improving exercise tolerance efficiently: how much sensor driven pacing is required? In: Santini M (ed) Progress in clinical pacing. Rome, pp 197–203Google Scholar
  7. 7.
    Bennett T, Sharma A, Sutton R et al (1992) Development of a rate adaptive pacemaker based on the maximum rate-of-rise of right ventricular pressure (RV dP/dtmax). Pacing Clin Electrophysiol 15:219–234PubMedCrossRefGoogle Scholar
  8. 8.
    Daum DR, Jones BR, Lang DJ (2000) Hemodynamic sensors. Am J Cardiol 86(Suppl):95K–100KPubMedCrossRefGoogle Scholar
  9. 9.
    Rickards AF, Bombardini T, Plicchi G et al (1996) An implantable intracardiac accele-rometer for monitoring myocardial contractility. Pacing Clin Electrophysiol 19:2066–2071PubMedCrossRefGoogle Scholar
  10. 10.
    Osswald S, Cron T, Gradel C et al (2000) Closed-loop stimulation using intracardiac impedance as a sensor principle: correlation of right ventricular dP/dtmax and intracardiac impedance during dobutamine stress test. Pacing Clin Electrophysiol 23:1502–1508PubMedCrossRefGoogle Scholar
  11. 11.
    Langenfeld H, Krein A, Kirstein M et al (1998) Peak endocardial acceleration based clinical testing of the “BEST” DDDR pacemaker. Pacing Clin Electrophysiol 21:2187–2191PubMedCrossRefGoogle Scholar
  12. 12.
    Clementy J, Kobeissi A, Garrigue S et al (2000) Validation by serial standardized testing of a new rate-responsive pacemaker sensor based on variations in myocardial contractility. Europace 3:124–131CrossRefGoogle Scholar
  13. 13.
    Padeletti L, Perna AM, Michelucci A et al (1998) Contractility and peak endocardial acceleration (PEA) during experimental coronary occlusion. Arch Coeur Vaisseaux Cardiostim 98:17–3 (abstract)Google Scholar
  14. 14.
    Plicchi G, Marcelli E, Parlapiano M et al (2002) PEA I and PEA II based implantable haemodynamic monitor: preclinical studies in sheep. Europace 4:49–54PubMedCrossRefGoogle Scholar
  15. 15.
    Schaldach M, Hutten H (1992) Intracardiac impedance to determine sympathetic activity in rate responsive pacing. Pacing Clin Electrophysiol 15:1778–1786PubMedCrossRefGoogle Scholar
  16. 16.
    Witte J, Pichelmaier AM, Ebner E et al (1996) ANS controlled rate adaptive pacing. A clinical evaluation. Eur J Card Pacing Electrophysiol 6:53–59Google Scholar
  17. 17.
    Griesbach L, Gestrich B, Wojciechowski D et al (2003) Clinical performance of automatic closed-loop stimulation systems. Pacing Clin Electrophysiol 26(Pt.I):1432–1437PubMedCrossRefGoogle Scholar
  18. 18.
    Chirife R, Ortega DF, Salazar A (1993) Feasibility of measuring relative right ventricular volumes and ejection fraction with implantable rhythm control devices. Pacing Clin Electrophysiol 16:1673–1683PubMedCrossRefGoogle Scholar
  19. 19.
    Chirife R, Tentori MC, Mazzetti H et al (2001) Hemodynamic sensors: are they all the same? In: Raviele A(ed) Cardiac arrhythmias. Springer, Milan, pp 566–575Google Scholar
  20. 20.
    Di Gregorio F, Morra A, Finesso M et al (1996) Transvalvular impedance (TVI) recording under electrical and pharmacological cardiac stimulation. Pacing Clin Electrophysiol 19(Pt II):1689–1693PubMedCrossRefGoogle Scholar
  21. 21.
    Gasparini M, Curnis A, Mantica M et al (2001) Hemodynamic sensors: what clinical value do they have in heart failure? In: Raviele A (ed) Cardiac arrhythmias. Springer, Milan, pp 576–585Google Scholar
  22. 22.
    Bongiorni MG, Soldati E, Arena G et al (2001) Hemodynamic sensors: what clinical value do they have in chronotropic incompetence? In: Raviele A (ed) Cardiac arrhythmias 2001. Springer, Milan, pp 595–601Google Scholar
  23. 23.
    Di Gregorio F, Curnis A, Pettini A et al (2002) Trans-valvular impedance (TVI) in the hemodynamic regulation of cardiac pacing. In: Mitro P, Pella D, Rybár R, Valocik G (eds) Cardiovascular diseases 2002. Monduzzi, Bologna, pp 53–57Google Scholar
  24. 24.
    Gasparini G, Curnis A, Mascioli G et al (2003) Clinical test of a pacing device driven by trans-valvular impedance. Pacing Clin Electrophysiol 26 (2-Pt II): S204 (abstract)Google Scholar
  25. 25.
    Deharo JC, Peyre JP, Ritter PH et al (1998) Treatment of malignant primary vasode-pressive neurocardiogenic syncope with a rate responsive pacemaker driven by heart contractility. Pacing Clin Electrophysiol 21:2688–2690PubMedCrossRefGoogle Scholar
  26. 26.
    Occhetta E, Bortnik M, Vassanelli C et al (2003) The DDDR closed loop stimulation for the prevention of vasovagal syncope: results from the INVASY prospective feasibility registry. Europace 5:153–162.PubMedCrossRefGoogle Scholar
  27. 27.
    Padeletti L, Porciani MC, Ritter P et al (2000) Atrioventricular interval optimization in the right atrial appendage and interatrial septum pacing: a comparison between echo and peak endocardial acceleration measurements. Pacing Clin Electrophysiol 23(11-Ptl):1618–1622PubMedCrossRefGoogle Scholar
  28. 28.
    Ravazzi AP, Diotallevi P, Provera MF et al (2001) AV delay optimization using ventricular intracardiac impedance. Europace 2 [Suppl C]:C26 (abstract)Google Scholar
  29. 29.
    Bordachar P, Garrigue S, Reuter S et al (2000) Hemodynamic assessment of right, left, and biventricular pacing by peak endocardial acceleration and echocardiography in patients with end-stage heart failure. Pacing Clin Electrophysiol 23(11-Pt II):1726–1730PubMedGoogle Scholar
  30. 30.
    Bocchiardo M, Caponi D, Di Donna P et al (2003) Optimization of resynchronization therapy by intracardiac ventricular impedance. In: Gulizia M (ed) New advances in heart failure and atrial fibrillation. Springer, Milan, pp 411–415CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2004

Authors and Affiliations

  • E. Occhetta
    • 1
  • A. Magnani
    • 1
  • M. Bortnik
    • 1
  • G. Francalacci
    • 1
  • F. Di Gregorio
    • 2
  • C. Vassanelli
    • 1
  1. 1.Division of Cardiology, School of MedicineUniversità degli Studi del PiemonteOrientale, NovaraItaly
  2. 2.Medico Clinical ResearchRubanoItaly

Personalised recommendations