Genetics of Sinus Node Disease

  • E. Schulze-Bahr
  • D. Etzrodt
  • H. Wedekind
  • G. Breithardt
  • D. Isbrandt
Conference paper


Sinus node dysfunction (SND) is a major cause necessitating pacemaker implantation and accounts for approximately half of all patients requiring a pacemaker [1]. The term “sinus node dysfunction” is currently applied to a number of sinus nodal and atrial abnormalities that include persistent or intermittent sinus bradycardia, sinus node arrest or exit block, combined sinoatrial and atrioventricular conduction delay, and episodes of atrial tach- yarrhythmias, sometimes together with periods of slow atrial and ventricular rates (“bradycardia-tachycardia syndrome”Several of these ECG patterns can be often recorded in the same patient. The disease commonly occurs in adults with acquired heart disease, during antiarrhythmic therapy, or after surgically corrected congenital heart disease. In a significant portion of patients, however, SND appears in the absence of identifiable cardiac abnormalities or other associated conditions (“idiopathic” SND) [2]. A familial occurrence of idio- pathic SND has been reported in some instances [3–5] and is also known for familial atrial fibrillation [2,4,5,10].


Heart Rate Variability Sinus Node Sinoatrial Node Sick Sinus Syndrome Sinus Node Dysfunction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lamas GA, Lee K, Sweeney M et al (2000) The mode selection trial (MOST) in sinus node dysfunction: design, rationale, and baseline characteristics of the first 1000 patients. Am Heart J 140:541–551PubMedCrossRefGoogle Scholar
  2. 2.
    Sarachek NS, Leonard JL (1972) Familial heart block and sinus bradycardia. Classification and natural history. Am J Cardiol 29:451–458CrossRefGoogle Scholar
  3. 3.
    Spellberg RD (1971) Familial sinus node disease. Chest 60:246–251PubMedCrossRefGoogle Scholar
  4. 4.
    Lehmann H, Klein UE (1978) Familial sinus node dysfunction with autosomal dominant inheritance. Br Heart J 40:1314–1316PubMedCrossRefGoogle Scholar
  5. 5.
    Mackintosh AF, Chamberlain DA (1979) Sinus node disease affecting both parents and both children. Eur J Cardiol 10:117–122PubMedGoogle Scholar
  6. 6.
    Beyer F, Paul T, Luhmer I, Bertram H, Kallfelz HC (1993) [Familial idiopathic atrial fibrillation with bradyarrhythmia. In German]. Z Kardiol 82:674–677Google Scholar
  7. 7.
    Brugada R, Tapscott T, Czernuszewicz GZ et al (1997) Identification of a genetic locus for familial atrial fibrillation. N Engl J Med 336:905–911PubMedCrossRefGoogle Scholar
  8. 8.
    Chen YH, Xu SJ, Bendahhou S et al (2003) KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299:251–254PubMedCrossRefGoogle Scholar
  9. 9.
    Ellinor PT, Shin JT, Moore RK, Yoerger DM, MacRae CA (2003) Locus for atrial fibrillation maps to chromosome 6ql4-16. Circulation 107:2880–2883PubMedCrossRefGoogle Scholar
  10. 10.
    Bertram H, Paul T, Beyer F, Kallfelz HC (1996) Familial idiopathic atrial fibrillation with bradyarrhythmia. Eur J Pediatr 155:7–10PubMedGoogle Scholar
  11. 11.
    Van Hulle CA, Corley R, Zahn-Waxier C, Kagan J, Hewitt JK (2000) An exploration of the genetic and environmental etiology of heart rate in infancy and middle childhood. Twin Res 3:259–265PubMedGoogle Scholar
  12. 12.
    Havlik RJ, Garrison RJ, Fabsitz R, Feinleib M (1980) Variability of heart rate, P-R, QRS and Q-T durations in twins. J Electrocardiol 13:45–48PubMedCrossRefGoogle Scholar
  13. 13.
    Hanson B, Tuna N, Bouchard T et al (1989) Genetic factors in the electrocardiogram and heart rate of twins reared apart and together. Am J Cardiol 63:606–609PubMedCrossRefGoogle Scholar
  14. 14.
    Degaute JP, Van Cauter E, van de BP, Linkowski P (1994) Twenty-hour-hour blood pressure and heart rate profiles in humans. A twin study. Hypertension 23:244–253CrossRefGoogle Scholar
  15. Voss A Busjahn A Wessel N et al (1996) Familial and genetic influences on heart rate variability. J Electrocardiol 29(Suppl):154–16Google Scholar
  16. 16.
    Russell MW, Law I, Sholinsky P, Fabsitz RR (1998) Heritability of ECG measurements in adult male twins. J Electrocardiol 30(Suppl):64–68PubMedCrossRefGoogle Scholar
  17. 17.
    Singh JP, Larson MG, O’Donnell CJ et al (1999) Heritability of heart rate variability: the Framingham Heart Study. Circulation 99:2251–2254PubMedCrossRefGoogle Scholar
  18. 18.
    Ranade K, Jorgenson E, Sheu WH et al (2002) A polymorphism in the betal adrener-gic receptor is associated with resting heart rate. Am J Hum Genet 70:935–942PubMedCrossRefGoogle Scholar
  19. 19.
    Guo J, Mitsuiye T, Noma A (1997) The sustained inward current in sino-atrial node cells of guinea-pig heart. Pflugers Arch 433:390–396PubMedCrossRefGoogle Scholar
  20. 20.
    Kodama I, Nikmaram MR, Boyett MR et al (1997) Regional differences in the role of the Ca2+ and Na+ currents in pacemaker activity in the sinoatrial node. Am J Physiol 272:H2793-H2806Google Scholar
  21. 21.
    Schram G, Pourrier M, Melnyk P, Nattel S (2002) Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res 90:939–950PubMedCrossRefGoogle Scholar
  22. 22.
    Brown HF, DiFrancesco D, Noble SJ (1979) How does adrenaline accelerate the heart? Nature 280:235–236PubMedCrossRefGoogle Scholar
  23. 23.
    DiFrancesco D, Tortora P (1991) Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature 351:145–147PubMedCrossRefGoogle Scholar
  24. 24.
    DiFrancesco D, Tromba C (1988) Inhibition of the hyperpolarization-activated current (if) induced by acetylcholine in rabbit sino-atrial node myocytes. J Physiol (Lond) 405:477–491Google Scholar
  25. 25.
    Irisawa H (1987) Membrane currents in cardiac pacemaker tissue. Experientia 43:1131–1135PubMedCrossRefGoogle Scholar
  26. 26.
    DiFrancesco D (1993) Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol 55:455–472PubMedCrossRefGoogle Scholar
  27. 27.
    Wang J, Chen S, Siegelbaum SA (2001) Regulation of hyperpolarization-activated HCN channel gating and cAMP modulation due to interactions of COOH terminus and core transmembrane regions. J Gen Physiol 118:237–250PubMedCrossRefGoogle Scholar
  28. 28.
    Wang J, Chen S, Nolan MF, Siegelbaum SA (2002) Activity-dependent regulation of HCN pacemaker channels by cyclic AMP: signaling through dynamic allosteric coupling. Neuron 36:451–461PubMedCrossRefGoogle Scholar
  29. 29.
    Wainger BJ, DeGennaro M, Santoro B, Siegelbaum SA, Tibbs GR (2001) Molecular mechanism of cAMP modulation of HCN pacemaker channels. Nature 411:805–810PubMedCrossRefGoogle Scholar
  30. 30.
    Viscomi C, Altomare C, Bucchi A et al (2001) C terminus-mediated control of voltage and cAMP gating of hyperpolarization-activated cyclic nucleotide-gated channels. J Biol Chem 276:29930–29934PubMedCrossRefGoogle Scholar
  31. 31.
    Schulze-Bahr E, Neu A, Friederich P et al (2003) Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest 111:1537–1545PubMedGoogle Scholar
  32. 32.
    Surawicz B, Hariman RJ (1988) Follow-up of the family with congenital absence of sinus rhythm. Am J Cardiol 61:467–469PubMedCrossRefGoogle Scholar
  33. 33.
    Bharati S, Surawicz B, Vidaillet HJ Jr, Lev M (1992) Familial congenital sinus rhythm anomalies: clinical and pathological correlations. Pacing Clin Electrophysiol 15:1720–1729PubMedCrossRefGoogle Scholar
  34. 34.
    Caralis DG, Varghese PJ (1976) Familial sinoatrial node dysfunction. Increased vagal tone a possible aetiology. Br Heart J 38:951–956CrossRefGoogle Scholar
  35. 35.
    Nordenberg A, Varghese PJ, Nugent EW (1976) Spectrum of sinus node dysfunction in two siblings. Am Heart J 91:507–512PubMedCrossRefGoogle Scholar
  36. 36.
    Mackintosh AF (1981) Sinoatrial disease in young people. Br Heart J 45:62–66PubMedCrossRefGoogle Scholar
  37. 37.
    Lehmann H, Klein UE (1977) [Familial sinoatrial and atrioventricular arrhythmia causing an emergency case (author’s trans)]. Med Klin 72:1379–1385Google Scholar
  38. 38.
    Ruiz dlF, Prieto F (1980) Heart-hand syndrome. III. A new syndrome in three generations. Hum Genet 55:43–47CrossRefGoogle Scholar
  39. 39.
    Seifert R, Scholten A, Gauss R et al (1999) Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proc Natl Acad Sci USA 96:9391–9396PubMedCrossRefGoogle Scholar
  40. 40.
    Ludwig A, Zong X, Hofmann F, Biel M (1999) Structure and function of cardiac pacemaker channels. Cell Physiol Biochem 9:179–186PubMedCrossRefGoogle Scholar
  41. 41.
    Kaupp UB, Seifert R (2001 ) Molecular diversity of pacemaker ion channels. Annu Rev Physiol 63:235–257Google Scholar
  42. 42.
    Santoro B, Liu DT, Yao H et al (1998) Identification of a gene encoding a hyperpolari-zation-activated pacemaker channel of brain. Cell 93:717–729PubMedCrossRefGoogle Scholar
  43. 43.
    Ludwig A, Zong X, Stieber J et al (1999) Two pacemaker channels from human heart with profoundly different activation kinetics. EMBO J 18:2323–2329PubMedCrossRefGoogle Scholar
  44. 44.
    Vaccari T, Moroni A, Rocchi M et al (1999) The human gene coding for HCN2, a pacemaker channel of the heart. Biochim Biophys Acta 1446:419–425PubMedCrossRefGoogle Scholar
  45. 45.
    Shi W, Wymore R, Yu H et al (1999) Distribution and prevalence of hyperpolariza-tion-activated cation channel (HCN) mRNA expression in cardiac tissues. Circ Res 85:el-e6Google Scholar
  46. 46.
    Groenewegen WA, Firouzi M, Bezzina CR et al (2003) A cardiac sodium channel mutation cosegregates with a rare connexin40 genotype in familial atrial standstill. Circ Res 92:14–22PubMedCrossRefGoogle Scholar
  47. 47.
    Grant AO, Carboni MP, Neplioueva V et al (2002) Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. J Clin Invest 110:1201–1209PubMedGoogle Scholar
  48. 48.
    Mohler PJ, Schott JJ, Gramolini AO et al (2003) Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421:634–639PubMedCrossRefGoogle Scholar
  49. 49.
    Blair E, Redwood C, Ashrafian H et al (2001) Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet 10:1215–1220PubMedCrossRefGoogle Scholar
  50. 50.
    Gollob MH, Green MS, Tang AS, Roberts R (2002) PRKAG2 cardiac syndrome: familial ventricular preexcitation, conduction system disease, and cardiac hypertrophy. Curr Opin Cardiol 17:229–234PubMedCrossRefGoogle Scholar
  51. 51.
    Arad M, Benson DW, Perez-Atayde AR et al (2002) Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest 109:357–362PubMedGoogle Scholar
  52. 52.
    Gollob MH (2003) Glycogen storage disease as a unifying mechanism of disease in the PRKAG2 cardiac syndrome. Biochem Soc Trans 31:228–231PubMedCrossRefGoogle Scholar
  53. 53.
    Olson TM, Keating MT (1996) Mapping a cardiomyopathy locus to chromosome 3p22-p25. J Clin Invest 97:528–532PubMedCrossRefGoogle Scholar
  54. 54.
    Paul M, Schulze-Bahr E, Breithardt G, Wichter T (2003) Genetics of arrhythmogenic right ventricular cardiomyopathy-status quo and future perspectives. Z Kardiol 92:128–136PubMedCrossRefGoogle Scholar
  55. 55.
    Nogami A, Adachi S, Nitta J et al (1990) Arrhythmogenic right ventricular dysplasia with sick sinus syndrome and atrioventricular conduction disturbance. Jpn Heart J 31:417–423PubMedCrossRefGoogle Scholar
  56. 56.
    Allensworth DC, Rice GJ, Lowe GW (1969) Persistent atrial standstill in a family with myocardial disease. Am J Med 47:775–784PubMedCrossRefGoogle Scholar
  57. 57.
    Hopkins LC, Jackson JA, Elsas LJ (1981) Emery-Dreifuss humeroperoneal muscular dystrophy: an X-linked myopathy with unusual contractures and bradycardia. Ann Neurol 10:230–237PubMedCrossRefGoogle Scholar
  58. 58.
    Woolliscroft J, Tuna N (1982) Permanent atrial standstill: the clinical spectrum. Am J Cardiol 49:2037–2041PubMedCrossRefGoogle Scholar
  59. 59.
    Ward DE, Ho SY, Shinebourne EA (1984) Familial atrial standstill and inexcitability in childhood. Am J Cardiol 53:965–967PubMedCrossRefGoogle Scholar
  60. 60.
    Shah MK, Subramanyan R, Tharakan J, Venkitachalam CG, Balakrishnan KG (1992) Familial total atrial standstill. Am Heart J 123:1379–1382PubMedCrossRefGoogle Scholar
  61. 61.
    Bione S, Maestrini E, Rivella S et al (1994) Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet 8:323–327PubMedCrossRefGoogle Scholar
  62. 62.
    Bonne G, Di Barletta MR, Varnous S et al (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21:285–288PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2004

Authors and Affiliations

  • E. Schulze-Bahr
    • 1
    • 2
  • D. Etzrodt
    • 2
  • H. Wedekind
    • 1
    • 2
  • G. Breithardt
    • 1
    • 2
  • D. Isbrandt
    • 3
  1. 1.Department of Cardiology and AngiologyHospital of the University of MünsterMünsterGermany
  2. 2.Molecular CardiologyInstitute for Arteriosclerosis Research at the University of MünsterMünsterGermany
  3. 3.University of HamburgInstitute for Neural Signal Transmission, ZMNHGermany

Personalised recommendations