Isolation of Pulmonary Veins Using Cryothermal Technologies

  • A. C. Skanes
  • A. D. Krahn
  • R. Yee
  • G. J. Klein
Conference paper


Elimination of pulmonary venous triggers can eliminate paroxysmal atrial fibrillation in 70–80% of selected patients [1–3]. This is achieved in most centers by isolation of 3 to 4 pulmonary veins at the pulmonary venous atrial junction. A major obstacle to the widespread dissemination of this procedure is the risk of significant pulmonary venous stenosis [4, 5]. Rates of severe symptomatic stenosis in high volume centers vary, but remain in the range of 1–8% [4–7]. Symptomatic stenosis can be very problematic [8]. Milder asymptomatic stenosis may be more prevalent and of unknown significance. Acute as well as chronic occlusions have also been described [8,9]. The incidence of stenosis in general practice may be underestimated. As such, a new technology that can effectively and permanently isolate the pulmonary veins without producing stenosis would be highly desirable.


Atrial Fibrillation Pulmonary Vein Pulmonary Vein Isolation Pulmonary Vein Stenosis Endothelial Disruption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haissaguerre M, Jais P, Shah DC et al (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:659–666PubMedCrossRefGoogle Scholar
  2. 2.
    Oral H, Knight BP, Tada H et al (2002) Pulmonary vein isolation for paroxysmal and persistent atrial fibrillation. Circulation 105:1077–1081PubMedCrossRefGoogle Scholar
  3. 3.
    Marrouche NF, Dresing T, Cole C et al (2002) Circular mapping and ablation of thepulmonary vein for treatment of atrial fibrillation. Impact of different catheter technologies. J Am Coll Cardiol 40:464–474PubMedCrossRefGoogle Scholar
  4. 4.
    Chen SA, Hsieh MH, Tai CT et al (1999) Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation. Circulation 100:1879–1886PubMedCrossRefGoogle Scholar
  5. 5.
    Chen SA, Yu WC, Tai CT (2000) Editorial comment: can we avoid pulmonary vein stenosis following ablation of atrial fibrillation? J Interv Card Electrophysiol 4:633–634PubMedCrossRefGoogle Scholar
  6. 6.
    Haissaguerre M, Jais P, Shah DC et al (2000) Electrophysiological end point for catheter ablation of atrial fibrillation initiated from multiple pulmonary venous foci. Circulation 101:1409–1417PubMedCrossRefGoogle Scholar
  7. 7.
    Mangrum JM, Mounsey JP, Kok LC et al (2002) Intracardiac echocardiography-guided, anatomically based radiofrequency ablation of focal atrial fibrillation originating from pulmonary veins. J Am Coll Cardiol 39:1964–1972PubMedCrossRefGoogle Scholar
  8. 8.
    Ernst S, Ouyang F, Goya M et al (2003) Total pulmonary vein occlusion as a consequence of catheter ablation for atrial fibrillation mimicking primary lung disease. J Cardiovasc Electrophysiol 14:366–370PubMedCrossRefGoogle Scholar
  9. 9.
    Packer DL, Peterson LA, Monahan KH et al (2002) Relationship between the degree of pulmonary vein narrowing and symptoms in pulmonary vein stenosis: Where is the symptom threshold? PACE 25:560 (Abstract)Google Scholar
  10. 10.
    Natale A, Pisano E, Shewchik J et al (2000) First human experience with pulmonary vein isolation using a through-the-balloon circumferential ultrasound ablation system for recurrent atrial fibrillation. Circulation 102:1879–1882PubMedCrossRefGoogle Scholar
  11. 11.
    Gage AA, Baust J (1998) Mechanisms of tissue injury in cryosurgery. Cryobiology 37:171–186PubMedCrossRefGoogle Scholar
  12. 12.
    Taylor GW, Kay GN, Zheng X et al (2000) Pathological effects of extensive radiofrequency energy applications in the pulmonary veins in dogs. Circulation 101:1736–1742PubMedCrossRefGoogle Scholar
  13. 13.
    Khairy P, Chauvet P, Lehmann J et al (2003) Lower incidence of thrombus formation with cryoenergy versus radiofrequency catheter ablation. Circulation in pressGoogle Scholar
  14. 14.
    Yamane T, Jais P, Shah DC et al (2000) Efficacy and safety of an irrigated-tip catheter for the ablation of accessory pathways resistant to conventional radiofrequency ablation. Circulation 102:2565–2568PubMedCrossRefGoogle Scholar
  15. 15.
    Chauvet P, Santoianni D, Tanguay J et al (2001) Cryoablation produces less endothelial thrombus than RF ablation. Circulation (Abstract)Google Scholar
  16. 16.
    Everett TH, Nath S, Lynch C et al (2001) Role of calcium in acute hyperthermic myocardial injury. J Cardiovasc Electrophysiol 12:563–569PubMedCrossRefGoogle Scholar
  17. 17.
    Haissaguerre M, Jais P, Shah DC et al (2000) Electrophysiological end point for catheter ablation of atrial fibrillation initiated from multiple pulmonary venous foci. Circulation 101:1409–1417PubMedCrossRefGoogle Scholar
  18. 18.
    Chen SS, Wright NT, Humphrey JD (1997) Heat-induced changes in the mechanics of a collagenous tissue: isothermal free shrinkage. J Biomech Eng 119:372–378PubMedCrossRefGoogle Scholar
  19. 19.
    Arnoczky SP, Aksan A (2002) Thermal modification of connective tissues: basic science considerations and clinical implications. J Am Acad Orthop Surg 8:305–313Google Scholar
  20. 20.
    Carter TR, Bailie DS, Edinger S (2002) Radiofrequency electrothermal shrinkage of the anterior cruciate ligament. Am J Sports Med 30:221–226PubMedGoogle Scholar
  21. 21.
    Deak G, Romhanyi G (1967) The thermal shrinkage process of collagen fibres as revealed by polarization optical analysis of topooptical staining reactions. Acta Morphol Acad Sei Hung 15:195–208Google Scholar
  22. 22.
    Gorisch W, Boergen KP (1982) Heat-induced contraction of blood vessels. Lasers Surg Med 2:1–13PubMedCrossRefGoogle Scholar
  23. 23.
    Klein GJ, Guiraudon GM, Perkins DG et al (1984) Surgical correction of the Wolff-Parkinson-White syndrome in the closed heart using cryosurgery: a simplified approach. J Am Coll Cardiol 3:405–409PubMedCrossRefGoogle Scholar
  24. 24.
    Klein GJ, Guiraudon GM, Perkins DG et al (1985) Controlled cryothermal injury to the AV node: feasibility for AV nodal modification. Pacing Clin Electrophysiol 8:630–638PubMedCrossRefGoogle Scholar
  25. 25.
    Szabo TS, Jones DL, Guiraudon GM et al (1987) Cryosurgical modification of the atrioventricular node: a closed heart approach in the dog. J Am Coll Cardiol 10:389–398PubMedCrossRefGoogle Scholar
  26. 26.
    Klein GJ, Harrison L, Ideker RF et al (1979) Reaction of the myocardium to cryosurgery: electrophysiology and arrhythmogenic potential. Circulation 59:364–372PubMedCrossRefGoogle Scholar
  27. 27.
    Tondo C, Fassini G, De Martino G et al (2002) Catheter isolation of the pulmonary veins by cryothermal ablation: Preliminary results. PACE 25:612(Abstract)Google Scholar
  28. 28.
    Wong T, Markides V, Chow AWC et al (2002) Percutaneous cryoablation pulmonary vein isolation to treat atrial fibrillation. PACE 25:552(Abstract)Google Scholar
  29. 29.
    Skanes AC, Klein GJ, Yee R, Krahn AD (2002) Initial experience with a novel circular cryoablation catheter for pulmonary vein isolation. Circulation (Abstract)Google Scholar
  30. 30.
    Bredikis J, Bredikis A (1985) Cryosurgical ablation of left parietal wall accessory atrioventricular connections through the coronary sinus without the use of extracorporeal circulation. J Thorac Cardiovasc Surg 90:199–205PubMedGoogle Scholar
  31. 31.
    Skanes AC, Jones D, Teefy P et al (2002) Cryoablation of accessory pathways via the distal coronary sinus: Safety and feasibility in a swine model. PACE 25:660 (Abstract)Google Scholar
  32. 32.
    Yagi T, Nakagawa H, Khammar GS et al (2001) Safety and efficacy of cryo-ablation in the canine coronary sinus. Circulation (Abstract)Google Scholar
  33. 33.
    Arruda M, Azegami K, Wang Z et al (2002) Circumferential cryoablation of pulmonary veins using a novel spiral catheter. PACE 25:592 (Abstract)Google Scholar
  34. 34.
    Skanes AC, Klein GJ, Yee R, Krahn AD (2002) Cryoablation does not cause pulmonary vein stenosis. Can J Cardiol (Abstract)Google Scholar
  35. 35.
    Tse H-F, Rodriguez L-M, Geller C et al (2002) Long-term safety and efficacy of transvenous cryoablation for pulmonary vein isolation for atrial fibrillation. PACE 25:551(Abstract)Google Scholar
  36. 36.
    Leite L, Asirvathaam S, Hammill SC et al (2002) Clinical and electrophysiologic predictors of pulmonary vein stenosis following radiofrequency catheter ablation for atrial fibrillation. PACE 25:559 (Abstract)Google Scholar
  37. 37.
    Saliba W, Wilber D, Packer D et al (2002) Circumferential ultrasound ablation for pulmonary vein isolation: analysis of acute and chronic failures. J Cardiovasc Electrophysiol 13:957–961PubMedCrossRefGoogle Scholar
  38. 38.
    Avitall B, Urboniene D, Rozmus G et al (2003) New cryotechnology for electrical isolation of the pulmonary veins. J Cardiovasc Electrophysiol 14:281–286PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2004

Authors and Affiliations

  • A. C. Skanes
    • 1
  • A. D. Krahn
    • 1
  • R. Yee
    • 1
  • G. J. Klein
    • 1
  1. 1.Arrhythmia ServiceUniversity of Western OntarioLondonCanada

Personalised recommendations