Advertisement

Pulmonary Diseases of Interest for Anaesthesiologists

  • E. Ciani

Abstract

If one considers the most widespread pulmonary diseases, chronic obstructive pulmonary disease (COPD) deserves the first place on the list. COPD is world-wide the fourth most common cause of death and shows an increasing rate of incidence both in industrialized and in developing countries. Thus, for an anaesthesi-ologist an understanding of this disease is important now and probably in the future as well.

Keywords

Chronic Obstructive Pulmonary Disease Chronic Obstructive Pulmonary Disease Patient Chronic Bronchitis Respir Crit Airflow Obstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adam PF, Benson V (1992) Current estimates from the national health interview survey. Vital Health Stat 184:1–232Google Scholar
  2. 2.
    Fletcher EC, Peto R (1997) The natural history of chronic airflow obstruction. Br Med J 1:1645–1648CrossRefGoogle Scholar
  3. 3.
    Anthonisen NR, Wright EC (1986) IPPB Trial Group: Bronchodilator response in chronic obstructive pulmonary disease. Am Rev Respir Dis 133:814–819PubMedGoogle Scholar
  4. 4.
    Mandella LA, Manfreda J, Warren CPW, Anthonisen NR (1982) Steroid response in stable chronic obstructive pulmonary disease. Ann Intern Med 96:17–21CrossRefGoogle Scholar
  5. 5.
    Anthonisen NR, Connett JE, Kiley JP et al (1994) Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1. The Lung Health Study. JAMA 272:1497–1505Google Scholar
  6. 6.
    Jamal K, Cooney TP, Fleetham JA et al (1984) Chronic bronchitisxorrelation of morphologic findings to sputum production and flow rates. Am Rev Respir Dis 129:717–722Google Scholar
  7. 7.
    Vestbo J, Prescott E, Lange P (1996) Association of chronic mucus hypersecretion with FEV1 decline and chronic obstructive pulmonary disease morbidity. Copenhagen City Heart Study Group. Am J Respir Crit Care Med 153:1530–1535Google Scholar
  8. 8.
    Keatings VM, Collins PD, Scott DM et al (1996) Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med 153:530–534PubMedGoogle Scholar
  9. 9.
    O’Donnell DE, Bertley JC, Chau LK et al (1997) Qualitative aspects of exertional breathlessness in chronic airflow limitation: pathophysiologic mechanisms. Am J Respir Crit Care Med 155:109–115Google Scholar
  10. 10.
    Earis JE (1992) Lung sounds. Thorax 47:671–672PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    David P, Denis P, Nouvet G et al (1982) Lung function and gastro-oesophageal reflux during chronic bronchitis. Bull Eur Physiopat Respir 18:81–86Google Scholar
  12. 12.
    Baarends EM, Schols AM, Pannemans DL et al (1997) Total free living energy expenditure in patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 155:549–554PubMedGoogle Scholar
  13. 13.
    Grant J, Heaton RK, McSweeny AJ et al (1982) Neuropsycologic findings in hypox-aemic chronic obstructive pulmonary disease. Arch Intern Med 142:1470–1476PubMedCrossRefGoogle Scholar
  14. 14.
    Calverley PMA, Brezinova V, Douglas NJ et al (1982) The effect of oxygenation on sleep-quality in chronic bronchitis and emphysema. Am Rev Respir Dis 126:206–210PubMedGoogle Scholar
  15. 15.
    Badgett RC, Tanaka DV, Hunt DK et al (1993) Can moderate chronic obstructive pulmonary disease be diagnosed by historical and physical findings alone? Am J Med 94:188–196PubMedCrossRefGoogle Scholar
  16. 16.
    Oliven A, Cherniak NS, Deal EC, Kelsen SG (1985) The effects of acute bronchocon-striction on respiratory activity in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 131:236–241PubMedGoogle Scholar
  17. 17.
    De Troyer A, Peche R, Yernault JC, Estenne M (1994) Neck muscle activity in patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 150:41–47PubMedGoogle Scholar
  18. 18.
    O’Donnel DF, Sanii R, Anthonisen NR, Younes M (1987) Effect of dynamic compression on breathing pattern and respiratory sensation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis 135:912–918Google Scholar
  19. 19.
    Walsh JM, Webber CI, Fahej PJ et al (1992) Structural change of the thorax in chronic obstructive pulmonary disease. J Appl Physiol 72:1270–1278PubMedGoogle Scholar
  20. 20.
    Decramer M (1997) Hyperinflation and respiratory muscle interaction. Europ Respir J 10:934–941Google Scholar
  21. 21.
    Martinez FJ, Couser JI, Celli BR (1990) Factors influencing ventilatory muscle recruitment in patients with chronic airflow obstruction. Am Rev Respir Dis 142:276–282PubMedCrossRefGoogle Scholar
  22. 22.
    Marini JJ, Pierson DJ, Hudson LD et al (1979) The significance of wheezing in chronic airflow obstruction. Am Rev Respir Dis 120:1069–1072PubMedGoogle Scholar
  23. 23.
    Nath AR, Capel LH (1974) Inspiratory crackles and mechanical events of breathing. Thorax 29:695–698PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Macklem PT (1972) Obstruction in small airways. Acxhallenge to medicine. Am J Med 52:721–724CrossRefGoogle Scholar
  25. 25.
    Woolcock AJ, Vincent NJ, Macklem PT (1969) Frequency dependence of compliance as a test for obstruction in the small airways. J Clin Invest 48:1097–1106PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Buist SA, Ross BR (1973) Quantitative analysis of the alveolar plateau in the diagnosis of early airway obstruction. Am Rev Respir Dis 107:735–743PubMedGoogle Scholar
  27. 27.
    Dolfuss RE, Milic-Emili J, Bates DV (1967) Regional ventilation of the lung studied with boluses of xenon. Respir Physiol 2:234–246CrossRefGoogle Scholar
  28. 28.
    Bouhuys A, Van de Woestijne KP (1970) Respiratory mechanics and dust exposure in byssinosis. J Clin Invest 49:106–118PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Dosman J, Bode F, Urbanetti J et al (1975) The use of helium-oxygen mixture during maximum expiratory flow to demonstarte obstruction in small airways in smokers. J Clin Invest 55:1090–1099PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Olofsson J, Svardsudd B, Skoog BE et al (1986) The single-breath N2 test predicts the rate of decline of FEV1. Eur J Respir Dis:69:46–56PubMedGoogle Scholar
  31. 31.
    Beaty TH, Menkes HA, Cochen BH et al (1984) Risk factors associated with longitudinal change in pulmonary function. Am Rev Respir Dis 129:660–667PubMedGoogle Scholar
  32. 32.
    Buist AS, Vollmer WM, Johnson LR et al (1988) Does the single-breath N2 test identify the smoker who will develop chronic airflow limitation? Am Rev Respir Dis 137:293–301PubMedCrossRefGoogle Scholar
  33. 33.
    Burrows B, Lebowitz MD, Camilli AK et al (1986) Longitudinal changes in forced expiratory volume in one second in adults. Am Rev Respir Dis 133:974–980PubMedGoogle Scholar
  34. 34.
    (1991) American Thoracic Society: Lung function testing: selection of reference values and interpretative strategies Am Rev Respir Dis 144:1202–1228Google Scholar
  35. 35.
    Siafakas NM, Vermeire P, Pride NB et al (1995) Optimal assessment and management of chronic obstructive pulmonary disease. Eur Respir J 8:1398–1420PubMedCrossRefGoogle Scholar
  36. 36.
    (1997) British Thoracic Society: Guidelines for the management of COPD. Thorax 52(Suppl):5–57Google Scholar
  37. 37.
    Ramsdale EH, Morris MM, Roberts RS et al (1994) Methacoline bronchiale responsiveness in chronic bronchitis; relationship to airflow obstruction and cold air responsiveness. Thorax 39:912–918CrossRefGoogle Scholar
  38. 38.
    Burrows B, Fletcher CM, Heard BE et al (1966) The emphysematous and bronchial types of chronic airway obstruction. Lancet I:830–835CrossRefGoogle Scholar
  39. 39.
    McLean A, Warren PM, Gillooly M et al (1992) Microscopic and macroscopic measurements of emphysema:relation to carbon monoxide gas transfer. Thorax 47:144–149PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lamb D, McLean A, Gillooly M et al (1993) The relationship between distal airspace size, bronchial attachments and lung function. Thorax 48:1012–1017PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Sorli J, Grassino A, Lorange G et al (1978) Control of breathing in patients with chronic obstructive pulmonary disease. Clin Sci Mol Med 54:294–304Google Scholar
  42. 42.
    Fleetham JA, Bradley CA, Kryger MH et al (1980) The effect of low flow oxygen therapy on the chemical control of ventilation in patients with hypoxemia. Am Rev Respir Dis 122:833–840PubMedGoogle Scholar
  43. 43.
    Gribbin HR, Gardiner IT, Heinz GJ et al (1983) Role of impaired inspiratory muscle function in limiting the ventilatory response to carbon dioxide in chorinc airways obstruction. Clin Sci 64:487–495PubMedGoogle Scholar
  44. 44.
    MacNee W (1994) Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part One. Am J Respir Crit Care Med 150:833–852PubMedGoogle Scholar
  45. 45.
    MacNee W (1994) Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part two. Am J Respir Crit Care Med 150:1158–1168Google Scholar
  46. 46.
    Biernacki W, Gould GA, Whyte KF et al (1989) Pulmonary hemodynamics, gas exchanges and the severity of emphysema as assessed by quantitative CT scan in chronic bronchitis and emphysema. Am Rev Respir Dis 139:1509–1515PubMedCrossRefGoogle Scholar
  47. 47.
    Carter R, Peavler M, Zinkgraf S et al (1987) Predicting maximal exercise ventilation in patients with chronic obstructive pulmonary disease. Chest 92:253–259PubMedCrossRefGoogle Scholar
  48. 48.
    Dilland TA, Piantadosi S, Rajagopal KR (1989) Determinants of maximum exercise capacity in patients with chronic airflow obstruction. Chest 96:267–271CrossRefGoogle Scholar
  49. 49.
    Loiseau A, Dubreuil P, Loiseau P et al (1989) Exercise tolerance in chronic obstructive pulmonary disease: importance of active and passive components of the ventilatory system. Eur Respir J 2:522–527PubMedGoogle Scholar
  50. 50.
    Katsura S, Martin CJ (1967) The roentgenologic diagnosis of anatomic emphysema, Am Rev Respir Dis 96:700–706Google Scholar
  51. 51.
    Lennon EA, Simon G (1965) The height of the diaphragm in chest radiograph of normal adults. Br J Radiol 38:937–943PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2004

Authors and Affiliations

  • E. Ciani

There are no affiliations available

Personalised recommendations