Respiratory Mechanics and Lung Parenchyma Remodelling in Acute Respiratory Distress Syndrome

  • W. A. Zin
  • P. R. M. Rocco


The first descriptions of acute respiratory distress syndrome appeared in 1967, when Ashbaugh et al [1] described 12 patients with acute respiratory distress, cyanosis refractory to oxygen therapy, decreased lung compliance, and diffuse infiltrates evident on the chest radiograph. It is not defined by a specific patho-genesis, but reflects the lung’s non-selective response to numerous insults and precipitating factors. Based on these observations, the term “syndrome”, defined as “group of symptoms and signs of disordered function related to one another by means of some anatomic, physiologic, or biochemical peculiarity”, was used. Although the term acute respiratory distress syndrome (ARDS) is often used interchangeably with acute lung injury (ALI), by strict criteria ARDS should be reserved for the most severe end of the spectrum [2].


Acute Lung Injury Idiopathic Pulmonary Fibrosis Pulmonary Fibrosis Acute Respiratory Distress Syndrome Respir Crit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashbaugh DG, Bigelow DB, Petty TL et al (1967) Acute respiratory distress syndrome. Lancet 2:319–323PubMedCrossRefGoogle Scholar
  2. 2.
    Bernard GR, Artigas A, Bringham KL et al (1994) The American-European consensus conference on ARDS: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824PubMedGoogle Scholar
  3. 3.
    Matthay MA (1999) Conference summary: acute lung injury. Chest 116:119–126CrossRefGoogle Scholar
  4. 4.
    Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1339PubMedCrossRefGoogle Scholar
  5. 5.
    Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures: protection by positive end-expiratory pressure. Am Rev Respir Dis 110:556–565PubMedGoogle Scholar
  6. 6.
    Parker JC, Townsley MI, Rippe B et al (1984) Increased microvascular permeability in dog lungs due to high peak airway pressure. J Appl Physiol 57:1809–1816PubMedGoogle Scholar
  7. 7.
    Dreyfuss D, Soler P, Basset G et al (1988) High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164PubMedCrossRefGoogle Scholar
  8. 8.
    Corbridge TC, Wood LDH, Crawford GP et al (1990) Adverse effects of large tidal volumes and low PEEP in canine acid aspiration. Am Rev Respir Dis 142:311–315PubMedCrossRefGoogle Scholar
  9. 9.
    Slutsky AS, Tremblay LN (1998) Multiple system organ failure: is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 157:1721–1725PubMedGoogle Scholar
  10. 10.
    Tomashefski JF Jr (2000) Pulmonary pathology of acute respiratory distress syndrome. Clin Chest Med 21:435–466PubMedCrossRefGoogle Scholar
  11. 11.
    Fein AM, Calalang-Colucci MG (2000) Acute lung injury and acute respiratory distress syndrome in sepsis and septic shock. Crit Care Clin 16:289–317PubMedCrossRefGoogle Scholar
  12. 12.
    Chesnutt AN, Matthay MA, Tibayan FA et al (1997) Early detection of type III procollagen peptide in acute lung injury. Pathogenic and prognostic significance. Am J Respir Crit Care Med 156:840–845CrossRefGoogle Scholar
  13. 13.
    Liebler JM, Qu Z, Buckner B et al (1998) Fibroproliferation and mast cells in the acute respiratory distress syndrome. Thorax 53:823–829PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Pugin J, Verghese G, Widmer MC et al (1999) The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome. Crit Care Med 27:304–312PubMedGoogle Scholar
  15. 15.
    Marshall RP, Bellingan G, Webb S et al (2000) Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome. Am J Respir Crit Care Med 162:1783–1788PubMedGoogle Scholar
  16. 16.
    Rocco PRM, Negri EM, Kurtz PM et al (2001) Lung tissue mechanics and extracellular matrix in acute lung injury. Am J Respir Crit Care Med 164:1067–1071PubMedGoogle Scholar
  17. 17.
    Raghu G, Striker LJ, Hudson LD et al (1985) Extracellular matrix in normal and fibrotic human lungs. Am Rev Respir Dis 131:281–289PubMedGoogle Scholar
  18. 18.
    Rocco PRM, Souza AB, Faffe DS et al (2003) Effect of corticosteroid on lung parenchyma remodelling at an early phase of acute lung injury. Am J Respir Crit Care Med 168:677–684PubMedGoogle Scholar
  19. 19.
    Montgomery A, Stager M, Carrico C et al (1985) Causes of mortality in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 132:485–489PubMedGoogle Scholar
  20. 20.
    Meduri GM (1995) Pulmonary fibroproliferation and deaths in patients with late ARDS. Chest 107:5–6PubMedCrossRefGoogle Scholar
  21. 21.
    Martin C, Papazian L, Paya M-J et al (1995) Pulmonary fibrosis correlates with out-come in adult respiratory distress syndrome. A study in mechanically ventilated patients. Chest 107:196–200Google Scholar
  22. 22.
    Grossman RF, Jones JG, Murray JF (1980) Effects of oleic acid-induced pulmonary edema on lung mechanics. J Appl Physiol 48:1045–1051PubMedGoogle Scholar
  23. 23.
    Gregory TJ, Longmore WJ, Moxley MA et al (1991) Surfactant chemical composition and biophysical activity in acute respiratory distress syndrome. J Clin Invest 88:1976–1981PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Ingenito EP, Mark L, Davison B (1994) Effects of acute lung injury on dynamic tissue properties. J Appl Physiol 77:2689–2697PubMedGoogle Scholar
  25. 25.
    Bachofen H (1968) Lung tissue resistance and pulmonary hysteresis. J Appl Physiol 24:296–301PubMedGoogle Scholar
  26. 26.
    Hildebrandt J (1969) Dynamic properties of air-filled excised cat lung determined by liquid plethysmograph. J Appl Physiol 27:246–250PubMedGoogle Scholar
  27. 27.
    Hildebrandt J (1970) Pressure-volume data of cat lung interpreted by a plastoelastic linear viscoelastic model. J Appl Physiol 28:365–372PubMedGoogle Scholar
  28. 28.
    Ingenito EP, Davison B, Fredberg JJ (1993) Tissue resistance in the guinea pig at baseline and during metacholine constriction. J Appl Physiol 75:2541–2548PubMedGoogle Scholar
  29. 29.
    Soubin SS, Fung YC, Tremer HM (1988) Collagen and elastin fibres in human alveolar walls. J Appl Physiol 64:1659–1675Google Scholar
  30. 30.
    Raghow R (1994) The role of extracellular matrix in postinflammatory wound healing and fibrosis. Faseb J 8:823–831PubMedGoogle Scholar
  31. 31.
    Yuan, H, Ingenito EP, Suki B (1997) Dynamic properties of lung parenchyma: mechanical contributions of fiber network and interstitial cells. J Appl Physiol 83:1420–1431PubMedGoogle Scholar
  32. 32.
    Fredberg JJ, Stamenovic D (1989) On the imperfect elasticity of lung tissue. J Appl Physiol 67:2408–2414PubMedGoogle Scholar
  33. 33.
    Yuan H, Kononov S, Cavalcante FSA et al (2000) Effects of collagenase and elastase on the mechanical properties of lung tissue strips. J Appl Physiol 89:3–14PubMedGoogle Scholar
  34. 34.
    Henke C, Marineili W, Jessurun J et al (1993) Macrophage production of basic fibroblast growth factor in the fibroproliferative disorder of alveolar fibrosis after lung injury. Am J Pathol 143:1189–1199PubMedCentralPubMedGoogle Scholar
  35. 35.
    Krein PM, Sabatini PJB, Tinmouth W et al (2003) Localization of insulin-like growth factor-I in lung tissues of patients with fibroproliferative acute respiratory distress syndrome. Am J Respir Crit Care Med 167:83–90PubMedGoogle Scholar
  36. 36.
    Madtes DK, Rubenfeld G, Klima LD et al (1998) Elevated transforming growth factor-alpha levels in bronchoalveolar lavage fluid of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 158:424–430PubMedGoogle Scholar
  37. 37.
    Ward PA, Hunninghake GW (1998) Lung inflammation and fibrosis. Am J Respir Crit Care Med 157:S123–S129PubMedGoogle Scholar
  38. 38.
    Mercer RR, Crapo JD (1990) Spatial distribution of collagen and elastin fibres in the lungs. J Appl Physiol 69:756–765PubMedGoogle Scholar
  39. 39.
    Dubick MA, Rucker RB, Cross CE et al (1981) Elastin metabolism in rodent lung. Biochim Biophys Acta 672:303–306PubMedCrossRefGoogle Scholar
  40. 40.
    Kida K, Yasui S, Utsuyama M et al (1984) Lung changes resulting from intraperitoneal injections of porcine pancreatic elastase in suckling rats. Am Rev Respir Dis 130:1111–1117PubMedGoogle Scholar
  41. 41.
    Fahrenbach WH, Sandberg LB, Cleary EG (1966) Ultrastructural studies on early elastogenesis. Anat Rec 155:563–568CrossRefGoogle Scholar
  42. 42.
    Greenlee TK, Ross R, Hartman JL (1966) The fine structures of elastic fibers. J Cell Biol 30:59–71PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Montes GS (1996) Structural biology of the fibres of the collagenous and elastic systems. Cell Biol Int 20:15–27PubMedCrossRefGoogle Scholar
  44. 44.
    Pierce RA, Albertine KH, Starcher BC et al (1997) Chronic lung injury in preterm lambs: disordered pulmonary elastin deposition. Am J Physiol 273:L452–460Google Scholar
  45. 45.
    Raghow R, Lurie S, Seyer JM et al (1985) Profile of steady state levels of RNAs coding for type I procollagen, elastin, and fibronectin in hamster lungs undergoing bleomycin-induced interstitial pulmonary fibrosis. J Clin Invest 76:1733–1739PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Moretto A, Dallaire M, Romero PV et al (1994) Effect of elastase on oscillation mechanics of lung parenchymal strips. J Appl Physiol 77:1623–1629PubMedGoogle Scholar
  47. 47.
    Rocco PRM, Leite-Junior JH, Souza AB et al (2002) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease: effect of corticosteroid. Eur Respir J 20:36Google Scholar
  48. 48.
    Zin WA, Santos FB, Nagato LKS et al (2002) Temporal evolution of respiratory mechanics and pulmonary structural remodelling in Escherichia coli lipopolysac-charide-induced acute respiratory distress syndrome. Eur Respir J 20:36Google Scholar
  49. 49.
    Armstrong L, Thickett DR, Mansell JP et al (1999) Changes in collagen turnover in early acute respiratory distress syndrome. Am J Respir Crit Care Med 160:1910–1915PubMedGoogle Scholar
  50. 50.
    Murphy G, Docherty AJ (1992) The matrix metalloproteinases and their inhibitors. Am J Respir Cell Mol Biol 7:120–125PubMedCrossRefGoogle Scholar
  51. 51.
    Shapiro SD, Senior RM (1999) Matrix metalloproteinases: matrix degradation and more. Am J Respir Cell Mol Biol 20:1100–1102PubMedCrossRefGoogle Scholar
  52. 52.
    Lanchou J, Corbel M, Tanguy M et al (2003) Imbalance between matrix metalloproteinases (MMP-9 and MMP-2) and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in acute respiratory distress syndrome patients. Crit Care Med 31:536–542PubMedGoogle Scholar
  53. 53.
    Gurujeyalakshmi G, Giri SN (1995) Molecular mechanisms of anti-fibrotic effect of interferon gamma in bleomycin-mouse model of lung fibrosis: down regulation of TGF-beta and procollagen I and III gene expression. Exp Lung Res 21:791–808PubMedCrossRefGoogle Scholar
  54. 54.
    Wilborn J, Crofford LJ, Burdick MD et al (1994) Cultured lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis have diminished capacity to synthesis prostaglandin E2 and to express cyclooxygenase-2. J Clin Invest 95:1861–1868CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2004

Authors and Affiliations

  • W. A. Zin
  • P. R. M. Rocco

There are no affiliations available

Personalised recommendations