Rapid, Whole-Brain T1 Relaxation Time Measurements for the Quantitative Definition of Pathological Changes in Multiple Sclerosis

  • A. M. Parry
  • S. Clare
  • P. M. Matthews
Part of the Topics in Neuroscience book series (TOPNEURO)


Multiple sclerosis (MS) is a disabling neurological condition characterized clinically by episodes of acute neurological dysfunction and/or progressive irreversible disability.


Multiple Sclerosis White Matter Focal Lesion Lesion Volume Axonal Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Evangelou N, Esiri MM, Smith S et al (2000) Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol 47:391–395PubMedCrossRefGoogle Scholar
  2. 2.
    Lovas G, Szilagyi N, Majtenyi K et al (2000) Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain 123:308–317PubMedCrossRefGoogle Scholar
  3. 3.
    Ganter P, Prince C, Esiri MM (1999) Spinal cord axonal loss in multiple sclerosis: a post-mortem study. Neuropathol Appl Neurobiol 25:459–467PubMedCrossRefGoogle Scholar
  4. 4.
    Brownell B, Hughes JT (1962) The distribution of plaques in the cerebrum in multiple sclerosis. J Neurol Neurosurg Psychiatry 25:315–320PubMedCrossRefGoogle Scholar
  5. 5.
    Kidd D, Barkhof F, McConnell R et al (1999) Cortical lesions in multiple sclerosis. Brain 122 (Pt l):17–26PubMedCrossRefGoogle Scholar
  6. 6.
    Peterson JW, Bö L, Mork S et al (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50:389–400PubMedCrossRefGoogle Scholar
  7. 7.
    Cifelli A, Arridge M, Jezzard P et al (2002) Thalamic neurodegeneration in multiple sclerosis. Ann Neurol 52:650–653PubMedCrossRefGoogle Scholar
  8. 8.
    Brex PA, Ciccarelli O, O’Riordan JI et al (2002) A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Engl J Med 346:158–164PubMedCrossRefGoogle Scholar
  9. 9.
    Miller DH (1998) Multiple sclerosis: use of MRI in evaluating new therapies. Semin Neurol 18:317–325PubMedCrossRefGoogle Scholar
  10. 10.
    van Walderveen MA, Kamphorst W, Scheltens P et al (1998) Histopathologic correlate of hypointense lesions on Tl-weighted spin-echo MRI in multiple sclerosis. Neurology 50:1282–1288PubMedCrossRefGoogle Scholar
  11. 11.
    van Waesberghe JH, Kamphorst W, De Groot CJ et al (1999) Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol 46:747–754PubMedCrossRefGoogle Scholar
  12. 12.
    Matthews PM, De Stefano N, Narayanan S et al (1998) Putting MRS studies in context: axonal damage and disability in MS. Semin Neurol 51:327–336CrossRefGoogle Scholar
  13. 13.
    van Walderveen MA, Barkhof F, Hommes OR et al (1995) Correlating MRI and clinical disease activity in multiple sclerosis: relevance of hypointense lesions on short-TR/short-TE (Tl-weighted) spin-echo images. Neurology 45:1684–1690PubMedCrossRefGoogle Scholar
  14. 14.
    Truyen L, van Waesberghe JH, van Walderveen MA et al (1996) Accumulation of hypointense lesions (“black holes”) on Tl spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 47:1469–1476PubMedCrossRefGoogle Scholar
  15. 15.
    Molyneux PD, Brex PA, Fogg C et al (2000) The precision of Tl hypointense lesion volume quantification in multiple sclerosis treatment trials: a multicenter study. Mult Scler 6:237–240PubMedGoogle Scholar
  16. 16.
    Kim SG, Hu X, Ugurbil K (1994) Accurate Tl determination from inversion recovery images: application to human brain at 4 Tesla. Magn Reson Med 31:445–449PubMedCrossRefGoogle Scholar
  17. 17.
    Breger RK, Wehrli FW, Charles HC (1986) Reproducibility of relaxation and spindensity parameters in phantoms and the human brain measured by MR imaging at 1.5 T. Magn Reson Med 3:649–662PubMedCrossRefGoogle Scholar
  18. 18.
    Jezzard P, Duewell S, Balaban RS (1996) MR relaxation times in human brain: measurement at 4 T. Radiology 199:773–779PubMedGoogle Scholar
  19. 19.
    Wansapura JP, Holland SK, Dunn RS, Ball WS Jr (1999) NMR relaxation times in the human brain at 3.0 tesla, I Magn Reson Imaging 9:531–538CrossRefGoogle Scholar
  20. 20.
    Lacomis D, Osbakken M, Gross G (1986) Spin-lattice relaxation (Tl) times of cerebral white matter in multiple sclerosis. Magn Reson Med 3:194–202PubMedCrossRefGoogle Scholar
  21. 21.
    Larsson HB, Frederiksen J, Petersen J et al (1989) Assessment of demyelination, edema, and gliosis by in vivo determination of Tl and T2 in the brain of patients with acute attack of multiple sclerosis. Magn Reson Med 11:337–348PubMedCrossRefGoogle Scholar
  22. 22.
    Crawley AP, Henkelman RM (1988) A comparison of one-shot and recovery methods in T1 imaging. Magn Reson Med 7:23–34PubMedCrossRefGoogle Scholar
  23. 23.
    Gowland P, Mansfield P (1993) Accurate measurement of Tl in vivo in less than 3 seconds using echo-planar imaging. Magn Reson Med 30:351–354PubMedCrossRefGoogle Scholar
  24. 24.
    Ordidge RJ, Gibbs P, Chapman B et al (1990) High-speed multislice Tl mapping using inversion-recovery echo-planar imaging. Magn Reson Med 16:238–245PubMedCrossRefGoogle Scholar
  25. 25.
    Clare S, Jezzard P (2001) Rapid T(l) mapping using multislice echo planar imaging. Magn Reson Med 45:630–634PubMedCrossRefGoogle Scholar
  26. 26.
    Gowland PA, Leach MO (1991) A simple method for the restoration of signal polar- ity in multi-image inversion recovery sequences for measuring Tl. Magn Reson Med 18:224–231PubMedCrossRefGoogle Scholar
  27. 27.
    Parry A, Clare S, Jenkinson M et al (2002) White matter and lesion Tl relaxation times increase in parallel and correlate with disability in multiple sclerosis. J Neurol 249:1279–1286PubMedCrossRefGoogle Scholar
  28. 28.
    Griffin CM, Chard DT, Parker GJ et al (2002) The relationship between lesion and normal appearing brain tissue abnormalities in early relapsing remitting multiple sclerosis. J Neurol 249:193–199PubMedCrossRefGoogle Scholar
  29. 29.
    Vaithianathar L, Tench CR,Morgan PS, Constantinescu CS (2003) Magnetic resonance imaging of the cervical spinal cord in multiple sclerosis - a quantitative Tl relaxation time mapping approach. J Neurol 250:307–315PubMedCrossRefGoogle Scholar
  30. 30.
    Vaithianathar L, Tench CR, Morgan PS (2002) Tl relaxation time mapping of white matter tracts in multiple sclerosis defined by diffusion tensor imaging. J Neurol 249:1272–1278PubMedCrossRefGoogle Scholar
  31. 31.
    Nusbaum AO, Tang CY, Wei T (2000) Whole-brain diffusion MR histograms differ between MS subtypes. Neurology 54:1421–1427PubMedCrossRefGoogle Scholar
  32. 32.
    Fu L, Matthews PM, De Stefano N et al (1998) Imaging axonal damage of normal appearing white matter in multiple sclerosis. Brain 121:103–113PubMedCrossRefGoogle Scholar
  33. 33.
    Sarchielli P, Presciutti O, Pelliccioli GP et al (1999) Absolute quantification of brain metabolites by proton magnetic resonance spectroscopy in normal-appearing white matter of multiple sclerosis patients. Brain 122:513–521PubMedCrossRefGoogle Scholar
  34. 34.
    Feinstein A, Kartsounis LD, Miller DH et al (1992) Clinically isolated lesions of the type seen in multiple sclerosis: a cognitive, psychiatric and MRI follow up study. J Neurol Neurosurg Psyhciatry 55:869–876CrossRefGoogle Scholar
  35. 35.
    Miller DH, Grossman RI, Reingold SC, McFarland HF (1998) The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain 121:3–24PubMedCrossRefGoogle Scholar
  36. 36.
    Trapp BD, Peterson J, Ransohoff RM et al (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285PubMedCrossRefGoogle Scholar
  37. 37.
    Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399PubMedCrossRefGoogle Scholar
  38. 38.
    Losseff NA, Miller DH (1998) Measures of brain and spinal cord atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry 64 (Suppl 1):S102–S105PubMedGoogle Scholar
  39. 39.
    Matthews PM (1999) Axonal loss and demyelation in multiple sclerosis. J Neurol Neurosurg Psychiatry 67:708–709PubMedCrossRefGoogle Scholar
  40. 40.
    Foong J, Rozewicz L, Chong WK (2000) A comparison of neuropsychological deficits in primary and secondary progressive multiple sclerosis. J Neurol 247:97–101PubMedCrossRefGoogle Scholar
  41. 41.
    Leary SM, Davie CA, Parker GJ et al (1999) 1H magnetic resonance spectroscopy of normal appearing white matter in primary progressive multiple sclerosis. J Neurol 246:1023–1026PubMedCrossRefGoogle Scholar
  42. 42.
    Evangelou N, Konz D, Esiri MM et al (2000) Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain 123:1845–1849PubMedCrossRefGoogle Scholar
  43. 43.
    Nieuwenhuys R, Voogd J, van Huijzen C (1981) The human central nervous system. A synopsis and atlas. Springer, Berlin Heidelberg New York, pp 163–168Google Scholar
  44. 44.
    Parry A, Clare S, Jenkinson M et al (2003) MRI brain Tl relaxation time changes in MS patients increase over time in both the white matter and the cortex. J Neuroimaging 13:234–239PubMedGoogle Scholar
  45. 45.
    Filippi M, Rocca MA, Martino G et al (1998) Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43:809–814PubMedCrossRefGoogle Scholar
  46. 46.
    Goodkin DE, Rooney WD, Sloan R et al (1998) A serial study of new MS lesions and the white matter from which they arise. Neurology 51:1689–1697PubMedCrossRefGoogle Scholar
  47. 47.
    Werring DJ, Brassat D, Droogan AG et al (2000) The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: a serial diffusion MRI study. Brain 123:1667–1676PubMedCrossRefGoogle Scholar
  48. 48.
    Lee MA, Smith S, Palace J, Matthews PM (1998) Defining multiple sclerosis disease activity using MRI T2-weighted difference imaging. Brain 121:2095–2102PubMedCrossRefGoogle Scholar
  49. 49.
    Qian ZM, Shen X (2001) Brain iron transport and neurodegeneration. Trends Mol Med 7:103–108PubMedCrossRefGoogle Scholar
  50. 50.
    Bakshi R, Dmochowski J, Shaikh ZA, Jacobs L (2001) Grey matter T2 hypointensity is related to plaques and atrophy in the brains of multiple sclerosis patients. J Neurol Sci 185:19–26PubMedCrossRefGoogle Scholar
  51. 51.
    Drayer B, Burger P, Hurwitz B et al (1987) Reduced signal intensity on MR images of thalamus and putamen in multiple sclerosis: increased iron content? AJR Am J Roentgenol 149:357–363PubMedGoogle Scholar
  52. 52.
    Grimaud J, Millar J, Thorpe JW et al (1995) Signal intensity on MRI of basal ganglia in multiple sclerosis. J Neurol Neurosurg Psychiatry 59:306–308PubMedCrossRefGoogle Scholar
  53. 53.
    Bakshi R, Shaikh ZA, Janardhan V (2000) MRI T2 shortening (’black T2’) in multiple sclerosis: frequency, location, and clinical correlation. Neuroreport 11:15–21PubMedCrossRefGoogle Scholar
  54. 54.
    Barnes D, McDonald WI, Johnson G et al (1987) Quantitative nuclear magnetic resonance imaging: characterisation of experimental cerebral oedema. J Neurol Neurosurg Psychiatry 50:125–133PubMedCrossRefGoogle Scholar
  55. 55.
    Barnes D, McDonald WI, Landon DN, Johnson G (1988) The characterization of experimental gliosis by quantitative nuclear magnetic resonance imaging. Brain 111:83–94PubMedCrossRefGoogle Scholar
  56. 56.
    van Walderveen MA, Lycklama GJ, Ader HJ et al (2001) Hypointense lesions on Tl- weighted spin-echo magnetic resonance imaging: relation to clinical characteristics in subgroups of patients with multiple sclerosis. Arch Neurol 58:76–81PubMedCrossRefGoogle Scholar
  57. 57.
    van Walderveen MA, Truyen L, van Oosten BV et al (1999) Development of hypointense lesions on Tl-weighted spin-echo magnetic resonance images in multi- ple sclerosis: relation to inflammatory activity. Arch Neurol 56:345–351PubMedCrossRefGoogle Scholar
  58. 58.
    Lucchinetti C, Brück W, Parisi J et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2004

Authors and Affiliations

  • A. M. Parry
  • S. Clare
  • P. M. Matthews

There are no affiliations available

Personalised recommendations