The Short T2 Component in Normal-Appearing White Matter in Multiple Sclerosis

  • A. MacKay
  • C. Laule
  • I. Vavasour
  • B. Mädler
  • A. Traboulsee
  • D. Paty
  • W. Moore
  • D. Li
Part of the Topics in Neuroscience book series (TOPNEURO)


While proton density/T2-weighted (PD/T2) MR images are exquisitely sensitive to pathology in brain tissue and play a key role in clinical applications of MRI to multiple sclerosis (MS), they are notoriously non-specific for particular brain pathologies. Moreover, the subtle tissue changes which occur in normal-appearing white matter (NAWM) in MS are not visible on PD/T2 images. However, measurements of T2 relaxation have the potential to provide more specific information about MS tissue pathology, both in lesions and in NAWM.


Multiple Sclerosis White Matter Fractional Anisotropy Decay Curve Magn Reson Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stewart WA, MacKay AL, Whittall KP et al (1993) Spin-spin relaxation in experimental allergic encephalomyelitis. Analysis of CPMG data using a non-linear least squares method and linear inverse theory. Magn Reson Med 29:767–775PubMedCrossRefGoogle Scholar
  2. 2.
    Poon CS, Henkelman RM (1992) Practical T2 quantitation for clinical applications. J Magn Reson Imaging 2:541–553PubMedCrossRefGoogle Scholar
  3. 3.
    Whittall KP, MacKay AL, Graeb DA et al (1996) In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 37:34–43CrossRefGoogle Scholar
  4. 4.
    Vymazal J, Brooks RA, Baumgarner C et al (1996) The relation between brain iron and NMR relaxation times: an in vitro study. Magn Reson Med 35:56–61PubMedCrossRefGoogle Scholar
  5. 5.
    Ye FQ, Martin WR, Allen PS (1996) Estimation of brain iron in vivo by means of the interecho time dependence of image contrast. Magn Reson Med 36:153–158PubMedCrossRefGoogle Scholar
  6. 6.
    Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51PubMedCrossRefGoogle Scholar
  7. 7.
    Whittall KP, MacKay AL (1989) Quantitative interpretation of NMR relaxation data. J Magn Reson 84:64–71Google Scholar
  8. 8.
    Stewart WA, MacKay AL, Whittall KP et al (1993) Spin-spin relaxation in experimental allergic encephalomyelitis. Analysis of CPMG data using a non-linear least squares method and linear inverse theory. Magn Reson Med 29:767–775PubMedCrossRefGoogle Scholar
  9. 9.
    MacKay A, Whittall K, Adler J et al (1994) In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med 31:673–677PubMedCrossRefGoogle Scholar
  10. 10.
    Menon RS, Allen PS (1991) Application of continuous relaxation time distributions to the fitting of data from model systems and excised tissue. Magn Reson Med 20:214–227PubMedCrossRefGoogle Scholar
  11. 11.
    Vasilescu V, Katona E, Simplaceanu V, Demco D (1978) Water compartments in the myelinated nerve. III. Pulsed NMR results. Experientia 34:1443–1444PubMedCrossRefGoogle Scholar
  12. 12.
    Norton W, Cammer W (1984) Isolation and characterization of myelin. In: Morell P (ed) Myelin, 2nd edn. Plenum Press, New York, pp 147–195Google Scholar
  13. 13.
    Wolff SD, Balaban R (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10:135–144PubMedCrossRefGoogle Scholar
  14. 14.
    Stanisz GJ, Kecojevic A, Bronskill MJ, Henkelman RM (1999) Characterizing white matter with magnetization transfer and T(2). Magn Reson Med 42:1128–1136PubMedCrossRefGoogle Scholar
  15. 15.
    Dousset V, Brochet B, Vital A et al (1995) Lysolecithin-induced demyelination in primates: preliminary in vivo study with MR and magnetization transfer. AJNR Am J Neuroradiol 16:225–231PubMedGoogle Scholar
  16. 16.
    Gareau PJ, Rutt BK, Bowen CV et al (1999) In vivo measurements of multi-component T2 relaxation behaviour in guinea pig brain. Magn Reson Imaging 17:1319–1325PubMedCrossRefGoogle Scholar
  17. 17.
    Gareau PJ, Rutt BK, Karlik SJ, Mitchell JR (2000) Magnetization transfer and multicomponent T2 relaxation measurements with histopathologic correlation in an experimental model of MS. J Magn Reson Imaging 11:586–595PubMedCrossRefGoogle Scholar
  18. 18.
    Laule C, Vavasour IM, Paty D et al (2002) Correlation between magnetization transfer ratio and myelin water content in normal white matter and MS lesions. [Abstract] Proc Int Soc Magn Reson Med 10:182Google Scholar
  19. 19.
    Vavasour IM, Whittall KP, MacKay AL et al (1998) A comparison between magnetization transfer ratios and myelin water percentages in normals and multiple sclerosis patients. Magn Reson Med 40:763–768PubMedCrossRefGoogle Scholar
  20. 20.
    Moseley ME, Cohen Y, Kucharczyk J et al (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176:439–445PubMedGoogle Scholar
  21. 21.
    Chenevert TL, Brunberg JA, Pipe JG (1990) Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology 177:401–405PubMedGoogle Scholar
  22. 22.
    Moseley ME, Kucharczyk J, Asgari HS, Norman D (1991) Anisotropy in diffusion-weighted MRI. Magn Reson Med 19:321–326PubMedCrossRefGoogle Scholar
  23. 23.
    Maedler B, Whittall KP, MacKay AL (2002) Correlation of multicomponent T2-relaxation data with diffusion tensor anisotropy measures in human brain. [Abstract] Proc Int Soc Magn Reson Med 10:1188Google Scholar
  24. 24.
    Webb S, Munro CA, Midha R, Stanisz GJ (2003) Is multicomponent T2 a good measure of myelin content in peripheral nerve? Magn Reson Med 49:638–645PubMedCrossRefGoogle Scholar
  25. 25.
    Araujo C, MacKay AL, Whittall KP et al (1993) A diffusion model for spin-spin relax ation of compartmentalized water in wood. J Magn Reson 101:248–261CrossRefGoogle Scholar
  26. 26.
    Moore GR, Leung E, MacKay AL et al (2000) A pathology-MRI study of the short-T2 component in formalin-fixed multiple sclerosis brain. Neurology 55:1506–1510PubMedCrossRefGoogle Scholar
  27. 27.
    Laule C, Leung E, Li DKB et al (2003) Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult Scler 9(Suppl 1):S12Google Scholar
  28. 28.
    Laule C, Vavasour IM, Moore GRW et al (2004) Water content and myelin water fraction in multiple sclerosis: a T2 relaxation study. J Neurol 251:284–293PubMedCrossRefGoogle Scholar
  29. 29.
    Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 46:907–911PubMedCrossRefGoogle Scholar
  30. 30.
    Rooney W, Springer C, Telang F et al (2002) Comparison of brain 4T Tl histograms between multiple sclerosis and control subjects. Mult Scler 8:80Google Scholar
  31. 31.
    Fatouros PP, Marmarou A (1999) Use of magnetic resonance imaging for in vivo measurements of water content in human brain: method and normal values. J Neurosurg 90:109–115PubMedCrossRefGoogle Scholar
  32. 32.
    Whittall KP, MacKay AL, Li DK et al (2002) Normal-appearing white matter in multiple sclerosis has heterogeneous, diffusely prolonged T(2). Magn Reson Med 47:403–408PubMedCrossRefGoogle Scholar
  33. 33.
    Werring DJ, Clark CA, Droogan AG et al (2001) Water diffusion is elevated in widespread regions of normal-appearing white matter in multiple sclerosis and correlates with diffusion in focal lesions. Mult Scler 7:83–89PubMedGoogle Scholar
  34. 34.
    Bammer R, Augustin M, Strasser-Fuchs S et al (2000) Magnetic resonance diffusion tensor imaging for characterizing diffuse and focal white matter abnormalities in multiple sclerosis. Magn Reson Med 44:583–591PubMedCrossRefGoogle Scholar
  35. 35.
    Filippi M, Iannucci G, Cercignani M et al (2000) A quantitative study of water diffusion in multiple sclerosis lesions and normal-appearing white matter using echo-planar imaging. Arch Neurol 57:1017–1021PubMedCrossRefGoogle Scholar
  36. 36.
    Tourtellotte W, Parker J (1968) Some spaces and barriers in postmortem multiple sclerosis. Prog Brain Res 29:493–525PubMedCrossRefGoogle Scholar
  37. 37.
    Allen IV, Glover G, Anderson R (1981) Abnormalities in the macroscopically normal white matter in cases of mild or spinal multiple sclerosis (MS). Acta Neuropathol 7(Suppl):176–178CrossRefGoogle Scholar
  38. 38.
    Allen IV, McKeown SR (1979) A histological, histochemical and biochemical study of the macroscopically normal white matter in multiple sclerosis. J Neurol Sci 41:81–91PubMedCrossRefGoogle Scholar
  39. 39.
    Allen IV, McQuaid S, Mirakhur M, Nevin G (2001) Pathological abnormalities in the normal-appearing white matter in multiple sclerosis. Neurol Sci 22:141–144PubMedCrossRefGoogle Scholar
  40. 40.
    Itoyama Y, Sternberger NH, Webster HD et al (1980) Immunocytochemical observations on the distribution of myelin-associated glycoprotein and myelin basic protein in multiple sclerosis lesions. Ann Neurol 7:167–177PubMedCrossRefGoogle Scholar
  41. 41.
    Suzuki K, Kamoshita S, Eto Y et al (1973) Myelin in multiple sclerosis. Composition of myelin from normal-appearing white matter. Arch Neurol 28:293–297PubMedCrossRefGoogle Scholar
  42. 42.
    Ailing C, Vanier MT, Svennerholm L (1971) Lipid alterations in apparently normal white matter in multiple sclerosis. Brain Res 35:325–336CrossRefGoogle Scholar
  43. 43.
    Fewster ME, Hirono H, Mead JF (1976) Lipid composition of myelin in multiple sclerosis. J Neurol 213:119–131PubMedCrossRefGoogle Scholar
  44. 44.
    Evangelou N, Esiri MM, Smith S et al (2000) Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol 47:391–395PubMedCrossRefGoogle Scholar
  45. 45.
    Evangelou N, Konz D, Esiri MM et al (2000) Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain 123:1845–1849PubMedCrossRefGoogle Scholar
  46. 46.
    Brooks RA, Di Chiro G, Keller MR (1980) Explanation of cerebral white-grey contrast in computed tomography. J Comput Assist Tomogr 4:489–491PubMedCrossRefGoogle Scholar
  47. 47.
    Morell P, Quarles RH, Norton W (1989) Formation, structure, and biochemistry of myelin. In: Siegel J (ed) Basic neurochemistry: molecular, cellular, and medical aspects, 4th edn. Raven Press, New York, pp 109–136Google Scholar
  48. 48.
    Ge Y, Grossman RI, Udupa JK et al (2001) Brain atrophy in relapsing-remitting multiple sclerosis: fractional volumetric analysis of grey matter and white matter. Radiology 220:606–610PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2004

Authors and Affiliations

  • A. MacKay
  • C. Laule
  • I. Vavasour
  • B. Mädler
  • A. Traboulsee
  • D. Paty
  • W. Moore
  • D. Li

There are no affiliations available

Personalised recommendations