Advertisement

The Grey Matter Component of MS Pathology: Magnetization Transfer and Diffusion-Weighted Imaging

  • M. A. Rocca
  • M. Filippi
Chapter
Part of the Topics in Neuroscience book series (TOPNEURO)

Abstract

The classical view of multiple sclerosis (MS) as a chronic inflammatory disease affecting the white matter (WM) of the central nervous system (CNS) has been recently challenged by pathological studies and by the extensive application of modern magnetic resonance imaging (MRI)-based techniques, including magnetization transfer (MT) MRI and diffusion-weighted (DW) MRI. These techniques have overcome some of the limitations of conventional MRI, such as its poor specificity to the heterogeneous pathological substrates of the disease, and have demonstrated that: (1) axonal pathology in macroscopic brain lesions and in normal-appearing brain tissue is an important feature of MS from its earliest phase; (2) grey matter (GM) is not spared by the pathological process in MS; and (3) brain plasticity might contribute to clinical recovery and the maintenance of a normal level of function in the presence of MS-related irreversible tissue loss.

Keywords

Multiple Sclerosis Multiple Sclerosis Patient Expand Disability Status Scale Mean Diffusivity Conventional Magnetic Resonance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brownell B, Hughes JT (1962) The distribution of plaques in the cerebrum in multiple sclerosis. J Neurol Neurosurg Psychiatry 25:315–320PubMedCrossRefGoogle Scholar
  2. 2.
    Lumsden CE (1970) The neuropathology of multiple sclerosis. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 9. Amsterdam, North-Holland, pp 217–309Google Scholar
  3. 3.
    Kidd D, Barkhof F, McConnell R, Algra PR, Allen IV, Revesz T (1999) Cortical lesions in multiple sclerosis. Brain 122:17–26PubMedCrossRefGoogle Scholar
  4. 4.
    Peterson JW, Bö L, Mork S, Chang A, Trapp BD (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50:389–400PubMedCrossRefGoogle Scholar
  5. 5.
    Bo L, Vedeler CA, Nyland H, Trapp BD, Mork SJ (2003) Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult Scler 9:323–331PubMedCrossRefGoogle Scholar
  6. 6.
    Bakshi R, Ariyaratana S, Benedict RH, Jacobs L (2001) Fluid-attenuated inversion recovery magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions. Arch Neurol 58:742–748PubMedCrossRefGoogle Scholar
  7. 7.
    Bakshi R, Benedict RH, Bermel RA et al (2002) T2 hypointensity in the deep grey matter of patients with multiple sclerosis: a quantitative magnetic resonance imaging study. Arch Neurol 59:62–68PubMedCrossRefGoogle Scholar
  8. 8.
    Catalaa I, Fulton JC, Zhang X et al (1999) MR imaging quantitation of grey matter involvement in multiple sclerosis and its correlation with disability measures and neurocognitive testing. AJNR Am J Neuroradiol 20:1613–1618PubMedGoogle Scholar
  9. 9.
    Lazeron RH, Langdon DW, Filippi M et al (2000) Neuropsychological impairment in multiple sclerosis patients: the role of (juxta)cortical lesion on FLAIR. Mult Scler 6:280–285PubMedGoogle Scholar
  10. 10.
    van Waesberghe JH, Kamphorst W, De Groot CJ et al (1999) Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol 46:747–754CrossRefGoogle Scholar
  11. 11.
    Filippi M, Inglese M (2001) Overview of diffusion-weighted magnetic resonance studies in multiple sclerosis. J Neurol Sci 186:S37–S43PubMedCrossRefGoogle Scholar
  12. 12.
    Basser PJ, Mattiello J, Le Bihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin-echo. J Magn Reson B 103:247–254PubMedCrossRefGoogle Scholar
  13. 13.
    Filippi M, Grossman RI, Comi G (eds) (1999) Magnetization transfer in multiple sclerosis. Neurology 53 [Suppl 3]Google Scholar
  14. 14.
    Pike GB, de Stefano N, Narayanan S et al (1999) Combined magnetization transfer and proton spectroscopic imaging in the assessment of pathologic brain lesions in multiple sclerosis. AJNR Am J Neuroradiol 20:829–837PubMedGoogle Scholar
  15. 15.
    Santos AC, Narayanan S, de Stefano N et al (2002) Magnetization transfer can predict clinical evolution in patients with multiple sclerosis. J Neurol 249:662–668PubMedCrossRefGoogle Scholar
  16. 16.
    Griffin CM, Chard DT, Parker GJ et al (2002) The relationship between lesion and normal appearing brain tissue abnormalities in early relapsing remitting multiple sclerosis. J Neurol 249:193–199PubMedCrossRefGoogle Scholar
  17. 17.
    Filippi M, Bozzali M, Comi G (2001) Magnetization transfer and diffusion tensor MR imaging of basal ganglia from patients with multiple sclerosis. J Neurol Sci 183:69–72PubMedCrossRefGoogle Scholar
  18. 18.
    Ge Y, Grossman RI, Udupa JK et al (2001) Magnetization transfer ratio histogram analysis of grey matter in relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol 22:470–475PubMedGoogle Scholar
  19. 19.
    Cercignani M, Bozzali M, Iannucci G et al (2001) Magnetisation transfer ratio and mean diffusivity of normal-appearing white and grey matter from patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 70:311–317PubMedCrossRefGoogle Scholar
  20. 20.
    Ge Y, Grossman RI, Udupa JK et al (2002) Magnetization transfer ratio histogram analysis of normal-appearing grey matter and normal-appearing white matter in multiple sclerosis. J Comput Assist Tomogr 26:62–68PubMedCrossRefGoogle Scholar
  21. 21.
    Dehmeshki J, Chard DT, Leary SM et al (2003) The normal appearing grey matter in primary progressive multiple sclerosis: a magnetisation transfer imaging study. J Neurol 250:67–74PubMedCrossRefGoogle Scholar
  22. 22.
    Rovaris M, Filippi M, Minicucci L et al (2000) Cortical/subcortical disease burden and cognitive impairment in multiple sclerosis. AJNR Am J Neuroradiol 21:402–408PubMedGoogle Scholar
  23. 23.
    Codella M, Rocca MA, Colombo B et al (2002) Cerebral grey matter pathology and fatigue in patients with multiple sclerosis: a preliminary study. J Neurol Sci 194:71–74PubMedCrossRefGoogle Scholar
  24. 24.
    Bozzali M, Cercignani M, Sormani MP et al (2002) Quantification of brain grey matter damage in different MS phenotypes by use of diffusion tensor MR imaging. AJNR Am J .Neuroradiol 23:985–988PubMedGoogle Scholar
  25. 25.
    Rovaris M, Bozzali M, Iannucci G et al (2002) Assessment of normal-appearing white and grey matter in patients with primary progressive multiple sclerosis: a diffusion-tensor magnetic resonance imaging study. Arch Neurol 59:1406–1412PubMedCrossRefGoogle Scholar
  26. 26.
    Rovaris M, Iannucci G, Falautano M et al (2002) Cognitive dysfunction in patients with mildly disabling relapsing-remitting multiple sclerosis: an exploratory study with diffusion tensor MR imaging. J Neurol Sci 195:103–109PubMedCrossRefGoogle Scholar
  27. 27.
    Cifelli A, Arridge M, Jezzard P et al (2002) Thalamic neurodegeneration in multiple sclerosis. Ann Neurol 52:650–653PubMedCrossRefGoogle Scholar
  28. 28.
    Fabiano AJ, Sharma J, Weinstock-Guttman B et al (2003) Thalamic involvement in multiple sclerosis: a diffusion-weighted magnetic resonance imaging study. J Neuroimaging 13:307–314PubMedGoogle Scholar
  29. 29.
    Roelcke U, Kappos L, Lechner-Scott J et al (1997) Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18F-flu-orodeoxyglucose positron emission tomography study. Neurology 48:1566–1571PubMedCrossRefGoogle Scholar
  30. 30.
    Filippi M, Rocca MA, Colombo B et al (2002) Functional magnetic resonance imaging correlates of fatigue in multiple sclerosis. Neuroimage 15:559–567PubMedCrossRefGoogle Scholar
  31. 31.
    Oreja-Guevara C, Rovaris M, Caputo D et al (2003) Changes in cortical grey matter in untreated relapsing-remitting MS patients: a follow up study. Neurology 60:A297Google Scholar
  32. 32.
    Miller DH, Barkhof F, Frank JA et al (2002) Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance [review]. Brain 125:1676–1695PubMedCrossRefGoogle Scholar
  33. 33.
    Jones DK, Simmons A, Williams SC, Horsfield MA (1999) Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn Reson Med 42:37–41PubMedCrossRefGoogle Scholar
  34. 34.
    Basser PJ, Pajevic S, Pierpaoli C et al (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632PubMedCrossRefGoogle Scholar
  35. 35.
    Behrens TE, Johansen-Berg H, Woolrich MW et al (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750–757PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2004

Authors and Affiliations

  • M. A. Rocca
  • M. Filippi

There are no affiliations available

Personalised recommendations