Advertisement

Microbubbles: Basic Principles

  • Viviana Serra
  • Miguel Angel García Fernández
  • José Luis Zamorano

Abstract

Echocardiography represents a basic tool for diagnosis of cardiac pathology. During the last few years technological advances have led to new imaging methods with more applications. The availability of wide-band transducers has been fundamental for the utilization of ultrasound contrast agents.

Keywords

Contrast Agent Myocardial Perfusion Mechanical Index Ultrasound Contrast Agent Contrast Echocardiography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Villarraga H, Foley D, Chung S, et al. Harmonic imaging during contrast echocardiography: basic principles and potential clinical value. In Kluwer Academic Publishers(ed). Advances In echo imaging using contrast enhancement 2nd ed. Nanda N, Schlief R, and Goldberg B.1997:433–450CrossRefGoogle Scholar
  2. 2.
    Spencer K, Berdnarz J, Rafter P, et al. Use of harmonic imaging without echocardiographic contrast to improve two-dimensional image quality. Am J Cardiol 1998;82(6):794–799CrossRefGoogle Scholar
  3. 3.
    Caidahl K, Kazzam E, Lidberg J, et al. New concept in echocardiography: harmonic imaging of tissue without use of contrast agent. The Lancet 1998;352(9136):1264–70CrossRefGoogle Scholar
  4. 4.
    Carerj S, Trono A, Zito C, et al. The second tissue harmonic signal: from physics principles to clinical aplication. Ital Heart J 2001;2(10 suppl):1078–86Google Scholar
  5. 5.
    Karsprzak J, Paelinck B, Folkert J, et al. Comparison of native and contrast-enhanced harmonic echocardiography for visualization of lef ventricular border. Am J Cardiol 1998;83(2):211–217Google Scholar
  6. 6.
    Kornbluth M, Liang D, Paloma A, Schnittger I. Native tissue harmonic imaging improves endocardial border definition and visualization of cardiac structures. J Am Soc Echocardiogr 1998;11:693–701PubMedCrossRefGoogle Scholar
  7. 7.
    Senior R, Soman P, Khattar RS, and Lahiri A. Improved endocardial visualization with second harmonic imaging compared with fundamental two dimensional echocardiographic imaging. Am Heart J 1999;138(1Pt1):163–8PubMedCrossRefGoogle Scholar
  8. 8.
    Skolnick D, Sawada S, Feingenbaum H, and Segar S. Enhanced endocardial visualization with noncontrast harmonic imaging during stress echocardiography. J Am Soc Echocardiogr 1999;12(7):559–63Google Scholar
  9. 9.
    Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol 1968;3:356–366PubMedCrossRefGoogle Scholar
  10. 10.
    Feinstein SB, Ten Cate FJ, Zwehl W et al. Two dimensional contrast echocardiography. In vitro development and quantitative analysis of eho contrast agent. J Am Coll Cardiol 1984;3:14PubMedCrossRefGoogle Scholar
  11. 11.
    Porter T, Xiei F, Kilzer K: Intravenous perfluoro-propane-exposed sonicated dextrose albumin produces myocardial ultrasound contrast that correlates with coronary blood flow. J Am Soc Echocardiogr 1995;8(5Pt1):710–718PubMedCrossRefGoogle Scholar
  12. 12.
    Cheng S, Dy T, and Feintein S. Contrast echocardiography: Review and future directions. Am J Cardiol 1998;81(12A):41G–48GPubMedCrossRefGoogle Scholar
  13. 13.
    Firschke C, Lindner J, Wei K, et al: Myocardial perfusion imaging in the setting of coronary artery stenosis and acute myocardial infarction using venous injection of a second generation echocardiographic contrast agent. Circulation 1997;96(3):959–67Google Scholar
  14. 14.
    Skyba DM, Camarano G, Goodman NC, et al: Hemodynamic characteristics, myocardial kinetics and microvascular rheology of FS-069, a second generation echocardiographic contrast agent capable of producing myocardial opacification from a venous injection. J Am Coll Cardiol 1996;28:1292–300PubMedCrossRefGoogle Scholar
  15. 15.
    DeMaria AN, Bommer WJ, Riggs K et al. Echocardiography visualization of myocardial perfusion by left heart and intracoronary injections of echo contrast agents (abstr). Circulation 1980 ;62(suppl II):143Google Scholar
  16. 16.
    Lindner J. Evolving applications for contrast ultrasound. Am J Cardiol 2002;90(suppl):72J–80JPubMedCrossRefGoogle Scholar
  17. 17.
    Burns PN, Powers JE, Simpson DH , et al. Harmonic imaging: principles and preliminary results. Clin Radiol 1996;51(suppl):50–5PubMedGoogle Scholar
  18. 18.
    Porter TR, Xie F, Kricsfeld D et al. Improved myocardial contrast with second harmonic transient ultrasound response imaging in humans using intravenous perflorocarbon-exposed sonicated dextrose albumin. J Am Coll Cardiol 1996;27:1497–501PubMedCrossRefGoogle Scholar
  19. 19.
    Kaul S: Myocardial contrast echocardiography. Curr Probl Cardiol 1997; 22:549–640PubMedCrossRefGoogle Scholar
  20. 20.
    De Jong N, Frinking PJ, Bouakaz A, et al. Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera. Ultrasound Med Biol 2000;26(3):487–92CrossRefGoogle Scholar
  21. 21.
    Forsberg F, Shi W and Goldberg B. Subharmonic imaging of contrast agents. Ultrasonics 2000;38(1–8):93–8CrossRefGoogle Scholar
  22. 22.
    Chomas J, Dayton P, May D, and Ferrara K, Nondestructive subharmonic imaging. IEEE Trans Ultrason Ferroelectr Freq Control 2002;49(7):883–92CrossRefGoogle Scholar
  23. 23.
    Calliada F, Campani R, Bottinelli O, and Sommaruga MG Ultrasound contrast agents: basic principles. Eur J Radiol 1998;27 suppl 2:S157–60PubMedCrossRefGoogle Scholar
  24. 24.
    Kuersten B, Murthy T, Li P, et al. Ultraharmonic myocardial contrast imaging. In vivo experimental and clinical data from a novel technique.J Am Soc Echocardiogr 2001;14:910–6PubMedCrossRefGoogle Scholar
  25. 25.
    Lindner J. Contrast echocardiography. Curr Probl Cardiol 2002;27:449–520CrossRefGoogle Scholar
  26. 26.
    Raisinghani A and DeMaria A. Physical principles of microbubbles ultrasound contrast agents. Am J Cardiol 2002;90(suppl 10 A):3J–7JPubMedCrossRefGoogle Scholar
  27. 27.
    Leong Poi H, Song J, Rim SJ, et al. Influence of microbubble properties on ultrasound signal: implications for low-power perfusion imaging. J Am Soc Echocardiogr 2002;15(10 Pt 2):1269–76.CrossRefGoogle Scholar
  28. 28.
    Michel Schneider. Design of an ultrasound contrast agent for myocardial perfusion. Echocardiography 2000;17(6pt2):S11–S16CrossRefGoogle Scholar
  29. 29.
    Villanueva FS, Jankowski RJ, Manaugh C, Wagner WR. Albumin microbubble adherence to human coronary endothelium: implications for assessment of endothelial function using myocardial contrast echocardiography. J Am Coll Cardiol 1997;30:689–93PubMedCrossRefGoogle Scholar
  30. 30.
    Fisher NG, Christiansen JP, Klibanov A, et al. Influence of microbubbles surface charge on capillary transit and myocardial contrast enhancement. J Am Coll Cardiol 2002;40(4):811–9CrossRefGoogle Scholar
  31. 31.
    Porter TR, Xie F: Visually discernible myocardial echocardiographyc contrast after intravenous injection of sonicated dextrose albumin microbubbles containing high molecular weight, less soluble gases. J Am Coll Cardiol 1995;25(2):509–515CrossRefGoogle Scholar
  32. 32.
    Wei K, Skyba D, Firschke C, et al. Interaction between microbubbles and ultrasound: in vitro and in vivo observations. J Am Coll Cardiol 1997;29(5):1081–1088CrossRefGoogle Scholar
  33. 33.
    De Jong N, Bouakaz A, Ten Cate FJ. Contrast harmonic imaging. Ultrasonics 2002;40(1–8):567–73CrossRefGoogle Scholar
  34. 34.
    Von Bibra H, Sutherland G, Becher H , et al. Clinical evaluation of left heart Doppler contrast enhancement by a saccharide-based transpulmonary contrast agent. The Levovist Cardiac Working Group. J Am Coll Cardioll 1995;25(2):500–508CrossRefGoogle Scholar
  35. 35.
    Porter TR, Xie F, Kricsfeld et al: improved endocardial border resolution during dobutamine stress echocardiography with intravenous sonicated dextrose albumin. J Am Coll Cardiol 1994;23 (6):1440–1443PubMedCrossRefGoogle Scholar
  36. 36.
    Moreno R, Zamorano J, Almería C et al. Usefulness of contrast agents in the diagnosis of left venticular pseudoaneurysm after acute myocardial infarction. Eur J Echocardiogr 2002;3(2):111–6CrossRefGoogle Scholar
  37. 37.
    Zamorano J, Sanchez V, Moreno R, et al. Contrast agents provide a faster learning curve in dipyridamole stress echocardiography. Int J cardiovasc imaging 2002;18(6):415–9CrossRefGoogle Scholar
  38. 38.
    Heinle S, Noblin J, Goree-Best P, et al. Assessment of Myocardial Perfusion by Harmonic Power Doppler Imaging at Rest and During Adenosine Stress. Comparison with 99m Tc Sestamibi SPECT Imaging. Circulation 2000;102:55–60PubMedCrossRefGoogle Scholar
  39. 39.
    Moreno R, Zamorano J, Serra V, et al. Weak concordance between wall motion and microvasculature status after acute myocardial infarction. Study with myocardial contrast echocardiography in real time with power modulation. Eur J Echocardiogr 2002;3:89–94PubMedCrossRefGoogle Scholar
  40. 40.
    Porter TR, Xie F, Kricsfeld A, et al. Reduction in left ventricular attenuation and improvement in posterior myocardial contrast with high molecular weight intravenous perfluorocarbon-exposed sonicated dextrose albumin microbubbles. J Am Soc Echocardiogr 1996;9:437–441PubMedCrossRefGoogle Scholar
  41. 41.
    Witt S. Implementing microbubble contrast in the echocardiography laboratory: a sonographer’s perpective. Am J Cardiol 2002;90(supp);15j–16jPubMedCrossRefGoogle Scholar
  42. 42.
    Senior R, Kaul S, Soman P and Lahiri A. Power Doppler harmonic imaging: a feasibility study of a new technique for the assessment of myocardial perfusion. Am Heart J 2000;139:245–51PubMedGoogle Scholar
  43. 43.
    Schneider M, Arditi M, Barrau M-B, et al. BR1: A new ultrasonographic contrast agent based on sulfur hexafluoride-filled microbubbles. Invest Radiol 1995;30(8):451–457CrossRefGoogle Scholar
  44. 44.
    Morel D, Schwieger I, Hohn L, et al. Human Pharmacokinetics and safety evaluation of SonoVue™, a new contrast agent for ultrasound imaging. Invest Radiol 2000;35(1):80–85CrossRefGoogle Scholar
  45. 45.
    Senior R, Andersson O, Caidahl K, et al. Enhanced left ventricular endocardial border delineation with an intravenous injection of SonoVue, a new echocardigraphic contrast agent: a European multicenter study. Echocardiogr 2000;17(8):705–11CrossRefGoogle Scholar
  46. 46.
    Broillet A, Puginier J, Ventrone R, and Schneider M. Assessment of myocardial perfusion by intermittent harmonic power Doppler using SonoVue, a new ultrasound contrast agent. Invest Radiol 1998;33(4):209–215CrossRefGoogle Scholar
  47. 47.
    Bokor D. Diagnostic efficacy of SonoVue. Am J Cardiol 2000;86(suppl):19G–24GPubMedCrossRefGoogle Scholar
  48. 48.
    Kuersten B, Nahar T, and Vannan M. Methods of contrast administration for myocardial perfusion imaging: continuous infusion versus bolus injection. Am J Cardiol 2002;90(suppl):35j–37jPubMedGoogle Scholar
  49. 49.
    Wei K, Jayaweera A, Firoozan S, et al. Basis for detection of stenosis using venous administration of microbubbles during myocardial contrast echocardiography: bolus or continuous infusion? J Am Coll Cardiol 1998;32(1):252–260CrossRefGoogle Scholar
  50. 50.
    Mayer S and Grayburn P. Myocardial contrast agents: recent advances and future directions. Progress in cardiovascular diseases 2001;44(1):33–44CrossRefGoogle Scholar
  51. 51.
    Wei K, Ragosta M, Thorpe J et al. Noninvasive quantification of coronary blood flow reserve in humans using myocardial contrast echocardiography. Circularion 2001;103:2560CrossRefGoogle Scholar
  52. 52.
    Rubin J, Bude R, Carson P et al. Power Doppler US: a potentially useful alternative to mean frequency-based colour Doppler US. Radiology 1994;190(3):853–6Google Scholar
  53. 53.
    Moreno R, Zamorano JL, Serra V, et al. Evaluation of myocardial perfusion with grey-scale Ultra-harmonic and multiple-frame triggering. Is there a need for quantification. Int J Cardiol 2003. In pressGoogle Scholar
  54. 54.
    Poi H, Le E, Rim S-J, et al. Quantification of myocardial perfusion and determination of coronary stenosis severity during hyperemia using real-time myocardial contrast echocardiography. J Am Soc Echocardiogr 2001;14:1173–82CrossRefGoogle Scholar
  55. 55.
    Kaul S. Myocardial contrast echocardiography: basic principles. Progress in Cardiovascular Diseases 2001;44(1):1–11CrossRefGoogle Scholar
  56. 56.
    Mor-Avi V, Caiani E, Collins K, et al. Combined assessment of myocardial perfusion and regional left ventricular function by analysis of contrast-enhanced power modulation images. Circulation 2001;104:352PubMedCrossRefGoogle Scholar
  57. 57.
    Moreno R, Zamorano JL, Serra V, et al. Myocardial perfusion in real-time using Power Modulation. Evidence for a microvasculature damage after acute myocardial infarction. Int J Cardiol 2003. In pressGoogle Scholar
  58. 58.
    Masugata H, Peters B, Lafitte S, et al. Quantitative assessment of myocardial perfusion during graded coronary stenosis by real-time myocardial contrast echo refilling curves. J Am Coll cardiol 2001;37:262–9PubMedCrossRefGoogle Scholar
  59. 59.
    Desco M, Ledesma-Carbrugo MJ, Santos A, García-Fernández MA, Marcos-Alberca P, Malpica N, Antoranz C, García-Barreno P. Coherent contrast imaging quantification for myocardial perfusion assessment. J Am Cold Cardiol 2001;37(suppl):495ACrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Viviana Serra
  • Miguel Angel García Fernández
  • José Luis Zamorano

There are no affiliations available

Personalised recommendations