Epstein SE, Cannon RO III, Talbot TL. Hemodynamic principles in the control of coronary blood flow. Am J Cardiol 1985 8;56:4E-10E.
Google Scholar
Marcus ML, Chilian WM, Kanatsuka H, Dellsperger KC, Eastham CL, Lamping KG. Understanding the coronary circulation through studies at the microvascular level. Circulation 1990;82:1–7
PubMed
CrossRef
CAS
Google Scholar
Hoffman JI. Determinants and prediction of transmural myocardial perfusion. Circulation 1978;58:381–91
PubMed
CrossRef
CAS
Google Scholar
Chilian WM. Coronary microcirculation in health and disease. Circulation 1997;95:522–8
PubMed
CrossRef
CAS
Google Scholar
Schwaiger M, Muzik O. Assessment of myocardial perfusion by positron emission tomography. Am J Cardiol1991;67:35D–43D
PubMed
CrossRef
CAS
Google Scholar
Passariello R, De Santis M. Magnetic resonance imaging evaluation of myocardial perfusion. Am J Cardiol 1998;81:68G–73G
PubMed
CrossRef
CAS
Google Scholar
Kaul S. Myocardial contrast echocardiography: 15 years of research and development. Circulation 1997;96:3745–60
PubMed
CrossRef
CAS
Google Scholar
Waller BF, Schlant R. Anatomy of the heart. In: W Alexander, RC Schlant and V Fuster (eds.): Hurst’s the heart, arteries and veins. 9th ed. McGraw-Hill, 1998:19–79
Google Scholar
Waller BF. Anatomy, histology, and pathology of the major epicardial coronary arteries relevant to echocardiographic imaging techniques. J Am Soc Echocardiogr 1989;2:232–52
PubMed
CAS
Google Scholar
Waller BF, Orr CM, Slack JD, Pinkerton CA, Van Tassel J, Peters T. Anatomy, histology, and pathology of coronary arteries: a review relevant to new interventional and imaging techniques-Part I. Clin Cardiol 1992;15:451–7
PubMed
CrossRef
CAS
Google Scholar
Waller BF, Orr CM, Slack JD, Pinkerton CA, Van Tassel J, Peters T. Anatomy, histology, and pathology of coronary arteries: a review relevant to new interventional and imaging techniques-Part II. Clin Cardiol 1992;15:535–40
PubMed
CrossRef
CAS
Google Scholar
Waller BF, Orr CM, Slack JD, Pinkerton CA, Van Tassel JV, Peters T. Anatomy, histology, and pathology of coronary arteries: a review relevant to new interventional and imaging techniques-Part III. Clin Cardiol 1992;15:607–15
PubMed
CrossRef
CAS
Google Scholar
Waller BF, Orr CM, Slack JD, Pinkerton CA, Van Tassel J, Peters T. Anatomy, histology, and pathology of coronary arteries: a review relevant to new interventional and imaging techniques-Part IV. Clin Cardiol 1992;15:675–87
PubMed
CrossRef
CAS
Google Scholar
Schlant R, Sonnenblick EH, Katz AM. Normal physiology of the cardiovascular system. In: W Alexander, RC Schlant and V Fuster (eds.): Hurst’s the heart, arteries and veins. 9th ed. McGraw-Hill, 1998:81–124
Google Scholar
Young DF. Fluid mechanics of arterial stenosis. J Biomech Eng 1979;101:157
CrossRef
Google Scholar
Gould KL. Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during coronary vasodilation. Circ Res 1978;43:242–53
PubMed
CrossRef
CAS
Google Scholar
Gould KL. Dynamic coronary stenosis. Am J Cardiol 1980;45:286–92
PubMed
CrossRef
CAS
Google Scholar
Schwartz JS, Carlyle PF, Cohn JN. Effect of coronary arterial pressure on coronary stenosis resistance. Circulation 1980;61:70–6
PubMed
CrossRef
CAS
Google Scholar
Mates RE, Gupta RL, Bell AC, Klocke FJ. Fluid dynamics of coronary artery stenosis. Circ Res 1978;42:152–62
PubMed
CrossRef
CAS
Google Scholar
Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol 1986;251:H779–88
PubMed
CAS
Google Scholar
Lamping KG, Kanatsuka H, Eastham CL, Chilian WM, Marcus ML. Nonuniform vasomotor responses of the coronary microcirculation to serotonin and vasopressin. Circ Res 1989;65:343–51
PubMed
CrossRef
CAS
Google Scholar
Bellamy RF. Diastolic coronary artery pressure-flow relations in the dog. Circ Res 1978;43:92–101
PubMed
CrossRef
CAS
Google Scholar
Hoffman JI. Maximal coronary flow and the concept of coronary vascular reserve. Circulation 1984;70:153–9
PubMed
CrossRef
CAS
Google Scholar
Vatner SF. Regulation of coronary resistance vessels and large coronary arteries. Am J Cardiol 1985;56:16E–22E
PubMed
CrossRef
CAS
Google Scholar
Harrison DG, Marcus ML, Dellsperger KC, Lamping KG, Tomanek RJ. Pathophysiology of myocardial perfusion in hypertension. Circulation 1991;83(Suppl):III14–8
Google Scholar
Wells R. Microcirculation and coronary blood flow. Am J Cardiol. 1972 Jun;29(6):847–50
CrossRef
Google Scholar
Ludmer PL, Selwyn AP, Shook TL et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315:1046–51
PubMed
CrossRef
CAS
Google Scholar
Egashira K, Inou T, Hirooka Y et al. Impaired coronary blood flow response to acetylcholine in patients with coronary risk factors and proximal atherosclerotic lesions. J Clin Invest 1993;91:29–37
PubMed
CrossRef
CAS
Google Scholar
Cox DA, Vita JA, Treasure CB et al. Atherosclerosis impairs flow-mediated dilation of coronary arteries in humans. Circulation 1989;80:458–65
PubMed
CrossRef
CAS
Google Scholar
Nabel EG, Selwyn AP, Ganz P. Large coronary arteries in humans are responsive to changing blood flow: an endothelium-dependent mechanism that fails in patients with atherosclerosis. J Am Coll Cardiol 1990;16:349–56
PubMed
CrossRef
CAS
Google Scholar
Chilian WM, Dellsperger KC, Layne SM et al. Effects of atherosclerosis on the coronary microcirculation. Am J Physiol 1990;258:H529–39
PubMed
CAS
Google Scholar
Zeiher AM, Drexler H, Wollschlager H, Just H.Endothelial dysfunction of the coronary microvas-culature is associated with coronary blood flow regulation in patients with early atherosclerosis. Circulation 1991;84:1984–92.
PubMed
CrossRef
CAS
Google Scholar
Zeiher AM, Drexler H, Saurbier B, Just H. Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest 1993;92:652–62
PubMed
CrossRef
CAS
Google Scholar
Hoffman JI, Buckberg GD. The myocardial supply:demand ratio. Am J Cardiol. 1978;41:327–32
PubMed
CrossRef
CAS
Google Scholar
Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373–6
PubMed
CrossRef
CAS
Google Scholar
Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:524–6
PubMed
CrossRef
CAS
Google Scholar
Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987;84:9265–9
PubMed
CrossRef
CAS
Google Scholar
Yanagisawa M, Kurihara H, Kimura S et al.A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988;332:411–5
PubMed
CrossRef
CAS
Google Scholar
Berne RM. The role of adenosine in the regulation of coronary blood flow. Circ Res 1980;47:807–13
PubMed
CrossRef
CAS
Google Scholar
VanDijk AM, Wieringa PA, van der Meer M, Laird JD. Mechanics of resting isolated single vascular smooth muscle cells from bovine coronary artery. Am J Physiol 1984;246:C277–87
Google Scholar
Kuo L, Davis MJ, Chilian WM. Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am J Physiol 1990 Oct;259:H1063–70
PubMed
CAS
Google Scholar
Chilian WM, Layne SM, Eastham CL, Marcus ML. Heterogeneous microvascular coronary alpha-adrenergic vasoconstriction. Circ Res 1989;64:376–88
PubMed
CrossRef
CAS
Google Scholar
Myers PR, Banitt PF, Guerra R Jr, Harrison DG. Characteristics of canine coronary resistance arteries: importance of endothelium. Am J Physiol 1989;257:H603–10
PubMed
CAS
Google Scholar
Feigl EO. Coronary physiology. Physiol Rev 1983;63:1–2095
PubMed
CAS
Google Scholar
Braunwald E. Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol 1971;27:416–32
PubMed
CrossRef
CAS
Google Scholar
Sonnenblick EH, Ross J Jr, Covell JW, Kaiser GA, Braunwald E. Velocity of contraction as a determinant of myocardial oxygen consumption. Am J Physiol 1965;209:919–27
PubMed
CAS
Google Scholar
Boerth RC, Covell JW, Pool PE, Ross J. Increased myocardial oxygen consumption and contractile state associated with increased heart rate in dogs. Circ Res 1969;24:725–34
PubMed
CrossRef
CAS
Google Scholar
Takaoka H, Takeuchi M, Odake M et al. Comparison of hemodynamic determinants for myocardial oxygen consumption under different contractile states in human ventricle. Circulation 1993;87:59–69
PubMed
CrossRef
CAS
Google Scholar
Kameyama T, Asanoi H, Ishizaka S et al. Energy conversion efficiency in human left ventricle. Circulation 1992;85:968–988
CrossRef
Google Scholar
Yada T, Richmond KN, Van Bibber R, Kroll K, Feigl EO. Role of adenosine in local metabolic coronary vasodilation. Am J Physiol 1999;276:H1425–33
PubMed
CAS
Google Scholar
Hess DS, Bache RJ. Transmural distribution of myocardial blood flow during systole in the awake dog. Circ Res 1976;38:5–15
PubMed
CrossRef
CAS
Google Scholar
Bache RJ, Cobb FR. Effect of maximal coronary vasodilation on transmural myocardial perfusion during tachycardia in the awake dog. Circ Res 1977;41:648–53
PubMed
CrossRef
CAS
Google Scholar
Bell JR, Fox AC. Pathogenesis of subendocardial ischemia. Am J Med Sci 1974;268:3–13
PubMed
CrossRef
CAS
Google Scholar
Jones CJ, Kuo L, Davis MJ, Chilian WM. Myogenic and flow-dependent control mechanisms in the coronary microcirculation. Basic Res Cardiol 1993; 88:2–10
PubMed
CAS
Google Scholar
Rajagopalan S, Dube S, Canty JM. Regulation of coronary diameter by myogenic mechanisms in arterial microvessels greater than 100 microns in diameter. Am J Physiol 1995;268:H788–H793
PubMed
CAS
Google Scholar
Little WC, Cheng CP, Mumma M, Igarashi Y, Vinten-Johansen J, Johnston WE. Comparison of measures of left ventricular contractile performance derived from pressure-volume loops in conscious dogs. Circulation 1989;80:1378–87
PubMed
CrossRef
CAS
Google Scholar
Kass DA, Maughan WL, Guo ZM, Kono A, Sunagawa K, Sagawa K. Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimental and theoretical analysis based on pressure-volume relationships. Circulation 1987;76:1422–3
PubMed
CrossRef
CAS
Google Scholar
Grandin C, Wijns W, Melin JA, Bol A, Robert AR, Heyndrickx GR et al. Delineation of myocardial viability with PET. J Nucl Med 1995;36(9):1543–52
Google Scholar
Yamamoto Y, de Silva R, Rhodes CG, Araujo LI, Iida H, Rechavia E et al. A new strategy for the assessment of viable myocardium and regional myocardial blood flow using 15O-water and dynamic positron emission tomography. Circulation 1992;86:167–78
PubMed
CrossRef
CAS
Google Scholar
Marinho NV, Keogh BE, Costa DC, Lammerstma AA, Ell PJ, Camici PG. Pathophysiology of chronic left ventricular dysfunction. New insights from the measurement of absolute myocardial blood flow and glucose utilization. Circulation 1996;93(4):737–44
CrossRef
Google Scholar
Ghaleh B, Shen YT, Vatner SF. Spatial heterogeneity of myocardial blood flow presages salvage versus necrosis with coronary artery reperfusion in conscious baboons. Circulation 1996;94:2210–5
PubMed
CrossRef
CAS
Google Scholar
Bassingthwaighte JB, Li Z. Heterogeneities in myocardial flow and metabolism: exacerbation with abnormal excitation. Am J Cardiol 1999;83:7H–12H
PubMed
CrossRef
CAS
Google Scholar
Camici PG, Wijns W, Borgers M, De Silva R, Ferrari R, Knuuti J et al. Pathophysiological mechanisms of chronic reversible left ventricular dysfunction due to coronary artery disease (hibernating myocardium). Circulation 1997;96:3205–14
PubMed
CrossRef
CAS
Google Scholar
Gerber BL, Vanoverschelde JL, Bol A, Michel C, Labar D, Wijns W et al. Myocardial blood flow, glucose uptake, and recruitment of inotropic reserve in chronic left ventricular ischemic dysfunction. Implications for the pathophysiology of chronic myocardial hibernation. Circulation 1996;94:651–9
PubMed
CrossRef
CAS
Google Scholar
Marin-Neto JA, Dilsizian V, Arrighi JA, Freedman NM, Perrone-Filardi P, Bacharach SL et al. Thallium reinjection demonstrates viable myocardium in regions with reverse redistribution. Circulation 1993;88:1736–45
PubMed
CrossRef
CAS
Google Scholar
Vatner SF. Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 1980;47:201–7
PubMed
CrossRef
CAS
Google Scholar
Gallagher KP, Matsuzaki M, Koziol JA, Kemper WS, Ross J. Regional myocardial perfusion and wall thickening during ischemia in conscious dogs. Am J Physiol 1984;247:H727–38
PubMed
CAS
Google Scholar
Bonow RO. Contractile reserve and coronary blood flow reserve in collateral-dependent myocardium. J Am Coll Cardiol 1999;33:705–7
PubMed
CrossRef
CAS
Google Scholar