Advertisement

Can Echocardiography Provide Combined Assessment of Left Ventricular Function and Myocardial Perfusion?

  • Victor Mor-Avi
  • R. Parker Ward
  • Roberto M. Lang

Abstract

While the relationship between coronary blood flow and myocardial function is complex and multifaceted, it can be summarized in one simplistic statement: reduction in coronary flow results in reduced myocardial perfusion leading to an ischemic cascade, the end-point of which is compromised ventricular function. Different methods used for the diagnosis of coronary heart disease are based on detection of these changes, either at rest or under stress. However, most of them focus on a single parameter, such as wall motion or myocardial perfusion, rather than providing comprehensive diagnosis based on the combined assessment of multiple variables. Thus, coronary angiography focuses on coronary anatomy to estimate coronary flow, nuclear imaging provides information on myocardial perfusion, and the echocardiographic diagnosis of ischemic heart disease is mainly based on the assessment of regional wall motion. It has been recognized that a technique capable of evaluating more than one variable in a single test would likely provide a more accurate and reliable diagnostic tool [1–2], and undoubtedly have an impact on the prognosis and risk stratification of patients with suspected ischemic heart disease. In addition, such a technique would be advantageous for the diagnosis of conditions characterized by a mismatch between blood supply and myocardial function, such as hibernating or stunned myocardium [3–5].

Keywords

Single Photon Emission Compute Tomography Myocardial Perfusion Wall Motion Leave Anterior Descend Perfusion Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borges-Neto S, Shaw LK. The added value of simul-taneous myocardial perfusion and left ventricular function. Curr Opin Cardiol. 1999; 14:460–463PubMedCrossRefGoogle Scholar
  2. 2.
    Anagnostopoulos C, Underwood SR. Simultaneous assessment of myocardial perfusion and function: how and when? Eur J Nucl Med. 1998; 25: 555–558PubMedCrossRefGoogle Scholar
  3. 3.
    Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation. 1982; 66:1146–1149PubMedCrossRefGoogle Scholar
  4. 4.
    Schulz R, Heusch G. Characterization of hibernat-ing and stunned myocardium. Eur Heart J. 1995; 16 Suppl J: 19–25PubMedCrossRefGoogle Scholar
  5. 5.
    Kloner RA, Arimie RB, Kay GL, Cannom D, Matthews R, Bhandari A, Shook T, Pollick C, Burstein S. Evi-dence for stunned myocardium in humans: a 2001 update. Coron Artery Dis. 2001; 12: 349–356PubMedCrossRefGoogle Scholar
  6. 6.
    Alderson PO, Wagner HN, Jr., Gomez-Moeiras JJ, Rehn TG, Becker LC, Douglas KH, Manspeaker HF, Schindledecker GR. Simultaneous detection of myocardial perfusion and wall motion abnormali-ties by cinematic 201 T1 imaging. Radiology. 1978; 127:531–533PubMedGoogle Scholar
  7. 7.
    Bonow RO. Gated myocardial perfusion imaging for measuring left ventricular function. / Am Coll Car-diol. 1997; 30: 1649–1650CrossRefGoogle Scholar
  8. 8.
    Constantinesco A, Mertz L, Brunot B. Myocardial perfusion and function imaging at rest with simul-taneous thallium-201 and technetium-99m blood-pool dual-isotope gated SPECT.J Nucl Med. 1997; 38: 432–437PubMedGoogle Scholar
  9. 9.
    Cwajg E, Cwajg J, He ZX, Hwang WS, Keng F, Nagueh SF, Verani MS. Gated myocardial perfusion tomog-raphy for the assessment of left ventricular function and volumes: comparison with echocardiography. / Nucl Med. 1999; 40: 1857–1865Google Scholar
  10. 10.
    Todino V, Rubini G, Cuocolo A. Assessment of left ventricular function by ECG-gated myocardial per-fusion scintigraphy with image inversion technique: comparison with equilibrium radionuclide angiog-raphy. J Nucl Cardiol. 1999; 6: 605–611PubMedCrossRefGoogle Scholar
  11. 11.
    Chua T, Yin LC, Thiang TH, Choo TB, Ping DZ, Leng LY. Accuracy of the automated assessment of left ven-tricular function with gated perfusion SPECT in the presence of perfusion defects and left ventricular dysfunction: correlation with equilibrium radionu-clide ventriculography and echocardiography. J Nucl Cardiol 2000; 7: 301–311PubMedCrossRefGoogle Scholar
  12. 12.
    Hyun IY, Kwan J, Park KS, Lee WH. Reproducibility of Tl-201 and Tc-99m sestamibi gated myocardial perfusion SPECT measurement of myocardial function J Nucl Cardiol 2001.8.182–187PubMedCrossRefGoogle Scholar
  13. 8.
    Constantinesco A, Mertz L, Brunot B. Myocardial perfusion and function imaging at rest with simul-taneous thallium-201 and technetium-99m blood-pool dual-isotope gated SPECT. J Nucl Med. 1997; 38: 432–437PubMedGoogle Scholar
  14. 9.
    Cwajg E, Cwajg J, He ZX, Hwang WS, Keng F, Nagueh SF, Verani MS. Gated myocardial perfusion tomog-raphy for the assessment of left ventricular functionGoogle Scholar
  15. 14.
    Bremerich J, Buser P, Bongartz G, Muller-Brand J, Gradel C, Pfisterer M, Steinbrich W. Noninvasive stress testing of myocardial ischemia: comparison of GRE-MRI perfusion and wall motion analysis to 99 mTc-MIBI-SPECT, relation to coronary angiog-raphy. Eur Radiol. 1997; 7: 990–995PubMedCrossRefGoogle Scholar
  16. 15.
    Aaberge L, Rootwelt K, Smith HJ, Nordstrand K, For-fang K. Effects of transmyocardial revascularization on myocardial perfusion and systolic function assessed by nuclear and magnetic resonance imag-ing methods. Scand CardiovascJ. 2001; 35: 8–13CrossRefGoogle Scholar
  17. 16.
    Everaert H, Vanhove C, Franken PR. Effects of lowT-dose dobutamine on left ventricular function in nor-mal subjects as assessed by gated single-photon emis-sion tomography myocardial perfusion studies. Eur J Nucl Med. 1999; 26: 1298–1303PubMedCrossRefGoogle Scholar
  18. 17.
    Flamen P, Dendale P, Bossuyt A, Franken PR. Com-bined left ventricular wall motion and myocardial perfusion stress imaging in the initial assessment of patients with a recent uncomplicated myocardial infarction. Angiology. 1995; 46:461–472PubMedCrossRefGoogle Scholar
  19. 18.
    Elhendy A, van Domburg RT, Bax JJ, Poldermans D, Nierop PR, Geleijnse ML, Roelandt JR. The grade of worsening of regional function during dobutamine stress echocardiography predicts the extent of myocardial perfusion abnormalities. Heart. 2000; 83: 35–39PubMedCrossRefGoogle Scholar
  20. 19.
    Everaert H, Vanhove C, Franken PR. Assessment of perfusion, function, and myocardial metabolism after infarction with a combination of low-dose dobuta-mine tetrofosmin gated SPECT perfusion scintigra-phy and BMIPP SPECT imaging. J Nucl Cardiol. 2000; 7: 29–36PubMedCrossRefGoogle Scholar
  21. 20.
    Gazarian M, Feldman BM, Benson LN, Gilday DL, Laxer RM, Silverman ED. Assessment of myocardial perfusion and function in childhood systemic lupus erythematosus. J Pediatr. 1998; 132:109–116PubMedCrossRefGoogle Scholar
  22. 21.
    Palmas W, Friedman JD, Diamond GA, Silber H, Kiat H, Berman DS. Incremental value of simultaneous assessment of myocardial function and perfusion with technetium-99m sestamibi for prediction of extent of coronary artery disease. J Am Coll Cardi-ol. 1995; 25: 1024–1031CrossRefGoogle Scholar
  23. 22.
    Everaert H, Vanhove C, Franken PR. Effect of beta-blockade on low-dose dobutamine-induced changes in left ventricular function in healthy volunteers:Nierop PR, Geleijnse ML, Roelandt JR. The grade of worsening of regional function during dobutamine stress echocardiography predicts the extent of myocardial perfusion abnormalities. Heart. 2000; 83: 35–39CrossRefGoogle Scholar
  24. 23.
    Danias PG, Ahlberg AW, Clark BA, III, Messineo F, Levine MG, McGill CC, Mann A, Clive J, Dougherty JE, Waters DD, Heller GV. Combined assessment of myocardial perfusion and left ventricular function with exercise technetium-99m sestamibi gated sin-gle-photon emission computed tomography can dif-ferentiate between ischemic and nonischemic dilat-ed cardiomyopathy. Am J Cardiol. 1998; 82:1253–1258PubMedCrossRefGoogle Scholar
  25. 24.
    Khattar RS, Senior R, Lahiri A. Assessment of myocar-dial perfusion and contractile function by inotrop-ic stress Tc-99m sestamibi SPECT imaging and echocardiography for optimal detection of multi-vessel coronary artery disease. Heart. 1998; 79: 274– 280PubMedGoogle Scholar
  26. 25.
    Dendale PA, Franken PR, Van Den HP, Van den BF, Bossuyt A. Exercise myocardial perfusion and wall motion imaging to predict recurrence of angina pec-toris after successful angioplasty. Acta Cardiol. 1996; 51:409–423PubMedGoogle Scholar
  27. 26.
    Zafrir N, Bassevitch R, Shimoni A, Teplitsky I, Lubin E. Effect of dipyridamole on myocardial perfusion and function using technetium-99m MIBI. Int J Car-diol 1995;49:25–31CrossRefGoogle Scholar
  28. 27.
    Kumita S, Cho K, Nakajo H, Toba M, Kijima T, Mizu-mura S, Oshina T, Kumazaki T, Sano J, Sakurai K, Munakata K. Serial assessment of left ventricular function during dobutamine stress by means of elec-trocardiography-gated myocardial SPECT: combi-nation with dual-isotope myocardial perfusion SPECT for detection of ischemic heart disease. J Nucl Cardiol. 2001; 8:152–157PubMedCrossRefGoogle Scholar
  29. 28.
    Paluszkiewicz L, Kwinecki P, Jemielity M, Szyszka A, Dyszkiewicz W, Cieslinski A. Myocardial perfusion correlates with improvement of systolic function of the left ventricle after CABG. Dobutamine echocar-diography and Tc-99m-MIBI SPECT study. Eur J Car-diothorac Surg. 2002; 21: 32–35CrossRefGoogle Scholar
  30. 29.
    Germano G, Kavanagh PB, Berman DS. An automatic approach to the analysis, quantitation and review of perfusion and function from myocardial perfusion SPECT images. Int J Card Imaging. 1997; 13: 337–346PubMedCrossRefGoogle Scholar
  31. 30.
    Nakata T, Katagiri Y, Odawara Y, Eguchi M, Kuroda M, Tsuchihashi K, Hareyama M, Shimamoto K. Two-and three-dimensional assessments of myocardial perfusion and function by using technetium-99m sestamibi gated SPECT with a combination of count-and image-based techniques. J Nucl Cardiol. 2000; 7: 623–632PubMedCrossRefGoogle Scholar
  32. 31.
    Bouvier F, Saltin B, Nejat M, Jensen-Urstad M. Left ventricular function and perfusion in elderly endurance athletes. Med Sci Sports Exerc. 2001; 33: 735–740PubMedGoogle Scholar
  33. 32.
    Bax JJ, Visser FC, Elhendy A, Poldermans D, Cornel JH, van Lingen A, Boersma E, Sloof GW, Fioretti PM,Visser CA. Prediction of improvement of regional left ventricular function after revascularization using different perfusion-metabolism criteria. J Nucl Med. 1999;40:1866–1873PubMedGoogle Scholar
  34. 33.
    Fuchs S, Baffour R, Zhou YF, Shou M, Pierre A, Tio FO, Weissman NJ, Leon MB, Epstein SE, Kornowski R. Transendocardial delivery of autologous bone mar-row enhances collateral perfusion and regional func-tion in pigs with chronic experimental myocardial ischemia.J Am Coll Cardiol. 2001; 37:1726–1732PubMedCrossRefGoogle Scholar
  35. 34.
    Kaul S, Pandian NG, Guerrero JL, Gillam LD, Okada RD, Weyman AE. Effects of selectively altering col-lateral driving pressure on regional perfusion and function in occluded coronary bed in the dog. Circ Res. 1987; 61: 77–85PubMedCrossRefGoogle Scholar
  36. 35.
    Scherrer-Crosbie M, Liel-Cohen N, Otsuji Y, Guer-rero JL, Sullivan S, Levine RA, Picard MH. Myocardial perfusion and wall motion in infarction border zone: assessment by myocardial contrast echocardiography. J Am Soc Echocardiogr. 2000; 13: 353–357PubMedGoogle Scholar
  37. 36.
    Kraitchman DL, Wilke N, Hexeberg E, Jerosch-Herold M, Wang Y, Parrish TB, Chang CN, Zhang Y, Bache RJ, Axel L. Myocardial perfusion and function in dogs with moderate coronary stenosis. Magn Reson Med. 1996; 35: 771–780PubMedCrossRefGoogle Scholar
  38. 37.
    Schwitter J, Saeed M, Wendland MF, Sakuma H, Bre-merich J, Canet E, Higgins CB. Assessment of myocar-dial function and perfusion in a canine model of non-occlusive coronary artery stenosis using fast magnetic resonance imaging. J Magn Reson Imag-ing. 1999; 9:101–110CrossRefGoogle Scholar
  39. 38.
    Lombardi M, Kvaerness J, Torheim G, Soma J, Cel-lerini F, Consalvo M, Landini MC, Cecchi CA, Michelassi C, Skjaerpe T, Jones RA, Rinck PA, L’Ab-bate A. Relationship between function and perfu-sion early after acute myocardial infarction. Int J Car-diovasc Imaging. 2001; 17: 383–393CrossRefGoogle Scholar
  40. 39.
    Sensky PR, Jivan A, Hudson NM, Keal RP, Morgan B, Tranter JL, de Bono D, Samani NJ, Cherryman GR. Coronary artery disease: combined stress MR imag-ing protocol-one-stop evaluation of myocardial per-fusion and function. Radiology. 2000; 215: 608–614PubMedGoogle Scholar
  41. 40.
    Laham RJ, Simons M, Pearlman JD, Ho KK, Bairn DS. Magnetic resonance imaging demonstrates improved regional systolic wall motion and thickening and myocardial perfusion of myocardial territories treat-ed by laser myocardial revascularization. / Am Coll Cardiol 2002; 39:1–8CrossRefGoogle Scholar
  42. 41.
    Leppo JA. An approach to myocardial viability based on perfusion, function and metabolic substrates. Isr J Med Sci. 1996; 32: 800–803PubMedGoogle Scholar
  43. 42.
    Rechavia E, de Silva R, Nihoyannopoulos P, Lam-mertsma AA, Jones T, Maseri A. Hyperdynamic per-formance of remote myocardium in acute infarction. Correlation between regional contractile func-tion and myocardial perfusion. Eur Heart J. 1995; 16: 1845–1850PubMedGoogle Scholar
  44. 43.
    Maes A, Van de WF, Nuyts J, Bormans G, Desmet W, Mortelmans L. Impaired myocardial tissue perfu-sion early after successful thrombolysis. Impact on myocardial flow, metabolism, and function at late follow-up. Circulation. 1995; 92: 2072–2078PubMedCrossRefGoogle Scholar
  45. 44.
    Tei C, Sakamaki T, Shah PM, Meerbaum S, Shimoura K, Kondo S, Corday E. Myocardial contrast echocar-diography: a reproducible technique of myocardial opacification for identifying regional perfusion deficits. Circulation. 1983; 67: 585–593PubMedCrossRefGoogle Scholar
  46. 45.
    Santoso T, Roelandt J, Mansyoer H, Abdurahman N, Meltzer RS, Hugenholtz PG. Myocardial perfusion imaging in humans by contrast echocardiography using polygelin colloid solution. J Am Coll Cardiol. 1985; 6: 612–620PubMedCrossRefGoogle Scholar
  47. 46.
    Lang RM, Feinstein SB, Feldman T, Neumann A, Chua KG, Borow KM. Contrast echocardiography for eval-uation of myocardial perfusion: effects of coronary angioplasty. J Am Coll Cardiol. 1986; 8: 232–235PubMedCrossRefGoogle Scholar
  48. 47.
    Feinstein SB, Lang RM, Dick C, Neumann A, Al Sadir J, Chua KG, Carroll J, Feldman T, Borow KM. Con-trast echocardiography during coronary arteriog-raphy in humans: perfusion and anatomic studies. J Am Coll Cardiol. 1988; 11: 59–65PubMedCrossRefGoogle Scholar
  49. 48.
    Cheirif J, Zoghbi WA, Raizner AE, Minor ST, Winters WL, Jr., Klein MS, De Bauche TL, Lewis JM, Roberts R, Quinones MA. Assessment of myocardial perfu-sion in humans by contrast echocardiography. I. Eval-uation of regional coronary reserve by peak contrast intensity/Am Coll Cardiol. 1988; 11: 735–743Google Scholar
  50. 49.
    Vandenberg BE Myocardial perfusion and contrast echocardiography: review and new perspectives. Echocardiography. 1991; 8: 65–75PubMedCrossRefGoogle Scholar
  51. 50.
    Rovai D, Lombardi M, Distante A, L’Abbate A. Myocardial perfusion by contrast echocardiography. From off-line processing to radio frequency analysis.Google Scholar
  52. 46.
    Lang RM, Feinstein SB, Feldman T, Neumann A, Chua KG, Borow KM. Contrast echocardiography for eval-uation of myocardial perfusion: effects of coronary angioplasty. J Am Coll Cardiol. 1986; 8: 232–235PubMedCrossRefGoogle Scholar
  53. 47.
    Feinstein SB, Lang RM, Dick C, Neumann A, Al Sadir J, Chua KG, Carroll J, Feldman T, Borow KM. Con-trast echocardiography during coronary arteriog-raphy in humans: perfusion and anatomic studies. J Am Coll Cardiol. 1988; 11: 59–65PubMedCrossRefGoogle Scholar
  54. 48.
    Cheirif J, Zoghbi WA, Raizner AE, Minor ST, Winters WL, Jr., Klein MS, De Bauche TL, Lewis JM, Roberts R, Quinones MA. Assessment of myocardial perfu-sion in humans by contrast echocardiography. I. Eval-uation of regional coronary reserve by peak contrast intensity/Am Coll Cardiol. 1988; 11: 735–743Google Scholar
  55. 49.
    Vandenberg BE Myocardial perfusion and contrast echocardiography: review and new perspectives.Google Scholar
  56. 55.
    Main ML, Grayburn PA. Clinical applications of transpulmonary contrast echocardiography. Am Heart J. 1999; 137:144–153PubMedCrossRefGoogle Scholar
  57. 56.
    Mulvagh SL, DeMaria AN, Feinstein SB, Burns PN, Kaul S, Miller JG, Monaghan M, Porter TR, Shaw LJ, Villanueva FS. Contrast echocardiography: current and future applications.J Am Soc Echocardiogr. 2000; 13:331–342PubMedCrossRefGoogle Scholar
  58. 57.
    Porter TR, Cwajg J. Myocardial contrast echocar-diography: a new gold standard for perfusion imag-ing? Echocardiography. 2001; 18: 79–87PubMedCrossRefGoogle Scholar
  59. 58.
    Wei K. Assessment of myocardial blood flow and vol-ume using myocardial contrast echocardiography. Echocardiography. 2002; 19: 409–416PubMedCrossRefGoogle Scholar
  60. 59.
    Zoghbi WA. Evaluation of myocardial viability with contrast echocardiography. Am J Cardiol. 2002; 90 Suppl 10A: 65J–71JPubMedCrossRefGoogle Scholar
  61. 60.
    Meza MF, Ramee S, Collins T, Stapleton D, Milani RV, Murgo JP, Cheirif J. Knowledge of perfusion and con-tractile reserve improves the predictive value of recovery of regional myocardial function post revas-cularization: a study using the combination of myocardial contrast echocardiography and dobut-amine echocardiography. Circulation. 1997; 96:3459– 3465PubMedCrossRefGoogle Scholar
  62. 61.
    Mor-Avi V, Caiani EG, Collins KA, Korcarz CE, Bed-narz JE, Lang RM. Combined assessment of myocar-dial perfusion and regional left ventricular function by analysis of contrast-enhanced power modulation images. Circulation. 2001; 104: 352–357PubMedCrossRefGoogle Scholar
  63. 62.
    Oraby MA, Hays J, Maklady FA, El Hawary AA, Yaneza LO, Zabalgoitia M. Comparison of real-time coher-ent contrast imaging to dipyridamole thallium-201 single-photon emission computed tomography for assessment of myocardial perfusion and left ven-tricular wall motion. Am J Cardiol. 2002; 90:449–454PubMedCrossRefGoogle Scholar
  64. 63.
    Leong-Poi H, Rim SJ, Le DE, Fisher NG, Wei K, Kaul S. Perfusion versus function: the ischemic cascade in demand ischemia: implications of single-vessel Ecnocaratography. 2002; 19:409–416Google Scholar
  65. 59.
    Zoghbi WA. Evaluation of myocardial viability with contrast echocardiography. Am J Cardiol. 2002; 90 Suppl 10A: 65J–71JPubMedCrossRefGoogle Scholar
  66. 60.
    Meza MF, Ramee S, Collins T, Stapleton D, Milani RV, Murgo JP, Cheirif J. Knowledge of perfusion and con-tractile reserve improves the predictive value of recovery of regional myocardial function post revas-cularization: a study using the combination of myocardial contrast echocardiography and dobut-amine echocardiography. Circulation. 1997; 96:3459– 3465PubMedCrossRefGoogle Scholar
  67. 61.
    Mor-Avi V, Caiani EG, Collins KA, Korcarz CE, Bed-narz JE, Lang RM. Combined assessment of myocar-dial perfusion and regional left ventricular function by analysis of contrast-enhanced power modulation images. Circulation. 2001; 104: 352–357PubMedCrossRefGoogle Scholar
  68. 62.
    Oraby MA, Hays J, Maklady FA, El Hawary AA, Yaneza LO, Zabalgoitia M. Comparison of real-time coher-ent contrast imaging to dipyridamole thallium-201 single-photon emission computed tomography for assessment of mvocardial perfusion and left venGoogle Scholar
  69. 63.
    Lang R, Vignon P, Weinert L, Bednarz J, Korcarz C, Sandelski J, Koch R, Prater D, Mor-Avi V. Echocar-diographic quantification of regional left ventricu-lar wall motion using Color Kinesis. Circulation. 1996;93:1877–1885PubMedCrossRefGoogle Scholar
  70. 64.
    Caiani EG, Lang RM, Caslini S, Collins KA, Korcarz CE, Mor-Avi V. Quantification of regional myocar-dial perfusion using semiautomated translation-free analysis of contrast-enhanced power modula-tion images.J Am Soc Echocardiogr. 2003; 16: 116-123PubMedCrossRefGoogle Scholar
  71. 68.
    Koch R, Lang RM, Garcia M, Weinert L, Bednarz J, Korcarz C, Coughlan B, Spiegel A, Kaji E, Spencer KT, Mor-Avi V. Objective evaluation of regional left ven-tricular wall motion during dobutamine stress chocardiographic studies using segmental analy-sis of color kinesis images. J Am Coll Cardiol. 1999; 34:409–419PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Victor Mor-Avi
  • R. Parker Ward
  • Roberto M. Lang

There are no affiliations available

Personalised recommendations