Myocardial Contrast Echocardiography and Inflammatory Response

  • José Azevedo
  • José Luis Zamorano
  • Miguel Angel García Fernández


In recent years, myocardial contrast echocar diography (MCE) has undergone many advances through remarkable developments in echocardiographic contrast agents pharmacodynamics and ultrasound technology [1–7]. The use of MCE has nowadays clear clinical indications, such as cardiac cavities opacification, improved endocardial border definition and quantification of myocardial perfusion. Recently, major progress has been made in MCE application for myocardial perfusion, especially under acute ischaemia and postischaemic conditions [1–3].


Acute Myocardial Infarction Contrast Echocardiography Myocardial Contrast Echocardiography Endothelial Wall Coronary Endothelial Cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klibanov AL. Targeted delivery of gas-filled micros pheres, contrast agents for ultrasound imaging. Adv. Drug Deliv Rev 1999; 37: 139–157PubMedCrossRefGoogle Scholar
  2. 2.
    Alkan-Onyuksel H, Demos S, Lanza G, Vonesh M, Klegerman M, Kane B, Kuszak J, McPherson D. Development of inherently echogenic liposomes as ultrasonic contrast agents. J Pharm Sci 1996; 85: 486–490PubMedCrossRefGoogle Scholar
  3. 3.
    Demos SM, Alkan-Onyuksel H, Kane BJ, Ramani K, Nagaraj A, Greene R, Klegerman M, McPherson D. In vivo targeting of acoustically reflective liposomes for intravascular and transvalvular ultrasonic enhancement. J Am Coll Cardiol 1999; 33: 867–875PubMedCrossRefGoogle Scholar
  4. 4.
    Springer TA. Adhesion receptors of the immune system. Nature 1990; 346: 425–434PubMedCrossRefGoogle Scholar
  5. 5.
    Ley K. Molecular mechanisms of leucocyte recruitment in the inflammatory process. Cardiovasc Res 1996; 32: 733–742PubMedGoogle Scholar
  6. 6.
    Skyba DM, Camarano G, Goodman NC, Price RJ, Skalat TC, Kaul S. Hemodynamics characteristics, myocardial kinetics and microvascular rheology of FS-069, a second generation echocardiographic contrast agent capable of producing myocardial opacification from a venous injection. J Am Coll Cardiol 1996; 28: 1292–1300PubMedCrossRefGoogle Scholar
  7. 7.
    Lindner JR, Song J, Jayaweera AR, Sklenar J, Kaul S. Microvascular rheology of Definity microbubbles after intra-arterial and intravenous administration. J Am Soc Echocardiogr 2002; 15: 396–403PubMedCrossRefGoogle Scholar
  8. 8.
    Keller MW, Spotnitz WD, Mathew TL, Glasheen WP, Watson DD, Kaul S. Intraoperative assessment of regional myocardial perfusion using quantitative myocardial contrast echocardiography. J Am Coll Cardiol 1990; 16: 1267–1279PubMedCrossRefGoogle Scholar
  9. 9.
    Lindner JR, Ismail S, Spotnitz WD, Skyba DM, Jayaweera AR, Kaul S. Albumin microbubble persistence during myocardial contrast echocardiography is associated with microvascular endothelial glycocalix damage. Circulation 1998; 98: 2187–2197PubMedCrossRefGoogle Scholar
  10. 10.
    Villanueva FS, Jankowski RJ, Klibanov S, Pina ML, Alber SM, Watkins SC, Brandenburger GH, Wagner WR. Microbubbles targeted to intercelullar molecule-I bind to activated coronary endothelial cells. Circulation 1998; 98: 1–5PubMedCrossRefGoogle Scholar
  11. 11.
    Lindner JR, Dayton PA, Coggins MP, LeyK, Song J, Ferrara K, Kaul S. Non-invasive imaging of inflammation by ultrasound detection of phagocytosed microbubles. Circulation 2000; 102: 531/538Google Scholar
  12. 12.
    Davies GE. The Mac-1 and p159,95 ß2 integrins binding denatured proteins to mediate leucocyte cell-substrate adhesion. Exp Cell Res 1992; 200: 242–252CrossRefGoogle Scholar
  13. 13.
    Comis A, Esterbrook-Smith SB. Inhibition of serum complement haemolytic activity by lipid vesicles containing phosphatidylserine. FEBS Lett 1986; 197: 321–327PubMedCrossRefGoogle Scholar
  14. 14.
    Lindner JR, Song J, Christiansen J, Klibanov AL, Xu F, Ley K. Ultrasound assessment of injury and inflammation using microbubbles targeted to P-selectin. Circulation 2001; 104: 2107–2112PubMedCrossRefGoogle Scholar
  15. 15.
    Christiansen JP, Song J, Matsunaga T, Lindner JR. Microbubbles targeted to the platelet IIb/IIIa integrin adhere to microvascular thrombi in vivo (abstract). Circulation 2001; 102305Google Scholar
  16. 16.
    Lanza GM, Wallace KD, Scott MJ, Cacheris WP, Abendschein DR, Christy DH, Sharkey AM, Miller JG, Gaffney PJ, Wickline SA. A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation 1997; 95: 3334–3340Google Scholar
  17. 17.
    Gunda M, Mulvagh SL. Recent advances in myocardial contrast echocardiography. Current opinion in cardiology 2001 July; 16(4): 231–9PubMedCrossRefGoogle Scholar
  18. 18.
    Christiansen JP, Poi L, Klibanov AL, Kaul S, Lindner JR. Non invasive imaging of myocardial reperfusion injury using leucocyte-targeted contrast echocardiography. Circulation 2002; Apr 16: 105(15): 1764–7PubMedCrossRefGoogle Scholar
  19. 19.
    Lindner JR, Coggins MP, Kaul S, Klibanov AL, Brandenburger GH, Key K. Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin-and complement-mediated adherence to activated leucocytes. Circulation 2000 Feb 15; 101(6): 668–75PubMedCrossRefGoogle Scholar
  20. 20.
    Dayton PA, Chomas JE, Lum A, Lindner JR, Simon SI, Ferrara KW. Optical and acoustical dynamics of microbubble contrast agents inside neutrophils. Biophys J 2001; 80: 1547–1556. The road from concept to reality. Echocardiography 2001; 18: 339–347PubMedCrossRefGoogle Scholar
  21. 21.
    J. Monge, J. Cortez, M.H. Custódio, L. Bronze, M. Vieira, J. Azevedo, A. Aleixo, M.G. Morais. Contrast echocardiography and its relationship with the intensity of the inflammatory response in the acute phase of myocardial infarction. Eur Heart J 2002; Vol 14, Abstr. Suppl.-Pag 715 (abstract)Google Scholar
  22. 22.
    Hiser W, Porter T, Li S, Deligonul U, Rice J, Kilzer K, Radio S. Inhibition of carotid artery neointimal formation after balloon injury using ultrasound targeted deposition of antisense to c-myc protooncogene bound to intravenously delivered perfluoro-carbon microbubbles (abstract). J Am Soc Echocardiogr 1998; 11: 498Google Scholar
  23. 23.
    Newman CM, Lawrie A, Brisken AF, Cumberland DC. Ultrasound gene therapy: on 24. Bao S, Thrall BD, Miller DL. Transfection of a reposter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol 1997; 23: 943–959Google Scholar
  24. 25.
    Shohet RV, Chen S, Zhou YT, Wang Z, Meidell RS, Unger RH, Grayburn PA. Echocardiographic destruc-tion of albumin microbubble directs gene delivery to the myocardium. Circulation 2000; 101: 2554–2556PubMedCrossRefGoogle Scholar
  25. 26.
    Chen S, Shohet RV, Frenkel P, Mayer S, Unger RH, Grayburn PA. Successful expression of plasmid DNA in rat myocardium by ultrasound-targeted microbubble destruction. J Am Coll Cardiol 2001; 37: 407ACrossRefGoogle Scholar
  26. 27.
    Christiansen JP, French BA, Matsumura M, Klibanov Lindner JR. Transfection of plasmid DNA in muscle tissue with ultrasound and cationic microbubble vesicles (abstract). J Am Soc Echocardiogr 2001; 14: 426Google Scholar
  27. 28.
    Skyba Dm, Price RJ, Linka AJ, Skalak TC, Kaul S. Direct in vivo visualisation of intravascular destruction of microbubbles by ultrasound and its local effects on tissue. Circulation; 98: 290–293Google Scholar
  28. 29.
    Porter TR, Iversen PL, Li S, Xie F. Interaction of diagnostic ultrasound with synthetic oligonucleotide-labeled perfluorocarbon-exposed sonicated dextrose albumin microbubbles. J Ultrasound Med 1996; 15: 577–584PubMedGoogle Scholar
  29. 30.
    Lindner JR. Evolving applications for contrast ultrasound Am J Cardiol 2002; 90: 72J–80JPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • José Azevedo
  • José Luis Zamorano
  • Miguel Angel García Fernández

There are no affiliations available

Personalised recommendations