The Physiological Basis of Coronary Circulation

  • Pedro Marcos-Alberca
  • Manuel Rey Pérez
  • Rosa Rábago
  • José Luis Zamorano
  • Miguel Angel García Fernández


The high prevalence of cardiovascular diseases in developed countries, particularly coronary heart disease, has resulted in an increasing interest in the physiological basis of the circulatory system and coronary flow [1–4]. The study of the physiology helps us understand cardiovascular pathologic disorders and their clinical manifestations better. But it also allows us to learn about some aspects of the diagnostic tools applied in cardiovascular disease, since most of them aim to disclose abnormalities in coronary flow. These techniques use some type of tracer, a substance that travels through the coronary circulation and interacts with the cells of the vascular wall and the myocytes, reflecting the state, normal or abnormal, of the blood flow. This is the case of isotopic diagnostic techniques (SPECT, PET), the most recent technologies of cardiac magnetic resonance imaging or myocardial contrast-enhanced echocardiography—the topic of this book [5–7].


Myocardial Perfusion Left Anterior Descend Myocardial Blood Flow Coronary Flow Right Coronary Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Epstein SE, Cannon RO III, Talbot TL. Hemodynamic principles in the control of coronary blood flow. Am J Cardiol 1985 8;56:4E-10E.Google Scholar
  2. 2.
    Marcus ML, Chilian WM, Kanatsuka H, Dellsperger KC, Eastham CL, Lamping KG. Understanding the coronary circulation through studies at the microvascular level. Circulation 1990;82:1–7PubMedCrossRefGoogle Scholar
  3. 3.
    Hoffman JI. Determinants and prediction of transmural myocardial perfusion. Circulation 1978;58:381–91PubMedCrossRefGoogle Scholar
  4. 4.
    Chilian WM. Coronary microcirculation in health and disease. Circulation 1997;95:522–8PubMedCrossRefGoogle Scholar
  5. 5.
    Schwaiger M, Muzik O. Assessment of myocardial perfusion by positron emission tomography. Am J Cardiol1991;67:35D–43DPubMedCrossRefGoogle Scholar
  6. 6.
    Passariello R, De Santis M. Magnetic resonance imaging evaluation of myocardial perfusion. Am J Cardiol 1998;81:68G–73GPubMedCrossRefGoogle Scholar
  7. 7.
    Kaul S. Myocardial contrast echocardiography: 15 years of research and development. Circulation 1997;96:3745–60PubMedCrossRefGoogle Scholar
  8. 8.
    Waller BF, Schlant R. Anatomy of the heart. In: W Alexander, RC Schlant and V Fuster (eds.): Hurst’s the heart, arteries and veins. 9th ed. McGraw-Hill, 1998:19–79Google Scholar
  9. 9.
    Waller BF. Anatomy, histology, and pathology of the major epicardial coronary arteries relevant to echocardiographic imaging techniques. J Am Soc Echocardiogr 1989;2:232–52PubMedGoogle Scholar
  10. 10.
    Waller BF, Orr CM, Slack JD, Pinkerton CA, Van Tassel J, Peters T. Anatomy, histology, and pathology of coronary arteries: a review relevant to new interventional and imaging techniques-Part I. Clin Cardiol 1992;15:451–7PubMedCrossRefGoogle Scholar
  11. 11.
    Waller BF, Orr CM, Slack JD, Pinkerton CA, Van Tassel J, Peters T. Anatomy, histology, and pathology of coronary arteries: a review relevant to new interventional and imaging techniques-Part II. Clin Cardiol 1992;15:535–40PubMedCrossRefGoogle Scholar
  12. 12.
    Waller BF, Orr CM, Slack JD, Pinkerton CA, Van Tassel JV, Peters T. Anatomy, histology, and pathology of coronary arteries: a review relevant to new interventional and imaging techniques-Part III. Clin Cardiol 1992;15:607–15PubMedCrossRefGoogle Scholar
  13. 13.
    Waller BF, Orr CM, Slack JD, Pinkerton CA, Van Tassel J, Peters T. Anatomy, histology, and pathology of coronary arteries: a review relevant to new interventional and imaging techniques-Part IV. Clin Cardiol 1992;15:675–87PubMedCrossRefGoogle Scholar
  14. 14.
    Schlant R, Sonnenblick EH, Katz AM. Normal physiology of the cardiovascular system. In: W Alexander, RC Schlant and V Fuster (eds.): Hurst’s the heart, arteries and veins. 9th ed. McGraw-Hill, 1998:81–124Google Scholar
  15. 15.
    Young DF. Fluid mechanics of arterial stenosis. J Biomech Eng 1979;101:157CrossRefGoogle Scholar
  16. 16.
    Gould KL. Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during coronary vasodilation. Circ Res 1978;43:242–53PubMedCrossRefGoogle Scholar
  17. 17.
    Gould KL. Dynamic coronary stenosis. Am J Cardiol 1980;45:286–92PubMedCrossRefGoogle Scholar
  18. 18.
    Schwartz JS, Carlyle PF, Cohn JN. Effect of coronary arterial pressure on coronary stenosis resistance. Circulation 1980;61:70–6PubMedCrossRefGoogle Scholar
  19. 19.
    Mates RE, Gupta RL, Bell AC, Klocke FJ. Fluid dynamics of coronary artery stenosis. Circ Res 1978;42:152–62PubMedCrossRefGoogle Scholar
  20. 20.
    Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol 1986;251:H779–88PubMedGoogle Scholar
  21. 21.
    Lamping KG, Kanatsuka H, Eastham CL, Chilian WM, Marcus ML. Nonuniform vasomotor responses of the coronary microcirculation to serotonin and vasopressin. Circ Res 1989;65:343–51PubMedCrossRefGoogle Scholar
  22. 22.
    Bellamy RF. Diastolic coronary artery pressure-flow relations in the dog. Circ Res 1978;43:92–101PubMedCrossRefGoogle Scholar
  23. 23.
    Hoffman JI. Maximal coronary flow and the concept of coronary vascular reserve. Circulation 1984;70:153–9PubMedCrossRefGoogle Scholar
  24. 24.
    Vatner SF. Regulation of coronary resistance vessels and large coronary arteries. Am J Cardiol 1985;56:16E–22EPubMedCrossRefGoogle Scholar
  25. 25.
    Harrison DG, Marcus ML, Dellsperger KC, Lamping KG, Tomanek RJ. Pathophysiology of myocardial perfusion in hypertension. Circulation 1991;83(Suppl):III14–8Google Scholar
  26. 26.
    Wells R. Microcirculation and coronary blood flow. Am J Cardiol. 1972 Jun;29(6):847–50CrossRefGoogle Scholar
  27. 27.
    Ludmer PL, Selwyn AP, Shook TL et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315:1046–51PubMedCrossRefGoogle Scholar
  28. 28.
    Egashira K, Inou T, Hirooka Y et al. Impaired coronary blood flow response to acetylcholine in patients with coronary risk factors and proximal atherosclerotic lesions. J Clin Invest 1993;91:29–37PubMedCrossRefGoogle Scholar
  29. 29.
    Cox DA, Vita JA, Treasure CB et al. Atherosclerosis impairs flow-mediated dilation of coronary arteries in humans. Circulation 1989;80:458–65PubMedCrossRefGoogle Scholar
  30. 30.
    Nabel EG, Selwyn AP, Ganz P. Large coronary arteries in humans are responsive to changing blood flow: an endothelium-dependent mechanism that fails in patients with atherosclerosis. J Am Coll Cardiol 1990;16:349–56PubMedCrossRefGoogle Scholar
  31. 31.
    Chilian WM, Dellsperger KC, Layne SM et al. Effects of atherosclerosis on the coronary microcirculation. Am J Physiol 1990;258:H529–39PubMedGoogle Scholar
  32. 32.
    Zeiher AM, Drexler H, Wollschlager H, Just H.Endothelial dysfunction of the coronary microvas-culature is associated with coronary blood flow regulation in patients with early atherosclerosis. Circulation 1991;84:1984–92.PubMedCrossRefGoogle Scholar
  33. 33.
    Zeiher AM, Drexler H, Saurbier B, Just H. Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest 1993;92:652–62PubMedCrossRefGoogle Scholar
  34. 34.
    Hoffman JI, Buckberg GD. The myocardial supply:demand ratio. Am J Cardiol. 1978;41:327–32PubMedCrossRefGoogle Scholar
  35. 35.
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373–6PubMedCrossRefGoogle Scholar
  36. 36.
    Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:524–6PubMedCrossRefGoogle Scholar
  37. 37.
    Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987;84:9265–9PubMedCrossRefGoogle Scholar
  38. 38.
    Yanagisawa M, Kurihara H, Kimura S et al.A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988;332:411–5PubMedCrossRefGoogle Scholar
  39. 39.
    Berne RM. The role of adenosine in the regulation of coronary blood flow. Circ Res 1980;47:807–13PubMedCrossRefGoogle Scholar
  40. 40.
    VanDijk AM, Wieringa PA, van der Meer M, Laird JD. Mechanics of resting isolated single vascular smooth muscle cells from bovine coronary artery. Am J Physiol 1984;246:C277–87Google Scholar
  41. 41.
    Kuo L, Davis MJ, Chilian WM. Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am J Physiol 1990 Oct;259:H1063–70PubMedGoogle Scholar
  42. 42.
    Chilian WM, Layne SM, Eastham CL, Marcus ML. Heterogeneous microvascular coronary alpha-adrenergic vasoconstriction. Circ Res 1989;64:376–88PubMedCrossRefGoogle Scholar
  43. 43.
    Myers PR, Banitt PF, Guerra R Jr, Harrison DG. Characteristics of canine coronary resistance arteries: importance of endothelium. Am J Physiol 1989;257:H603–10PubMedGoogle Scholar
  44. 44.
    Feigl EO. Coronary physiology. Physiol Rev 1983;63:1–2095PubMedGoogle Scholar
  45. 45.
    Braunwald E. Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol 1971;27:416–32PubMedCrossRefGoogle Scholar
  46. 46.
    Sonnenblick EH, Ross J Jr, Covell JW, Kaiser GA, Braunwald E. Velocity of contraction as a determinant of myocardial oxygen consumption. Am J Physiol 1965;209:919–27PubMedGoogle Scholar
  47. 47.
    Boerth RC, Covell JW, Pool PE, Ross J. Increased myocardial oxygen consumption and contractile state associated with increased heart rate in dogs. Circ Res 1969;24:725–34PubMedCrossRefGoogle Scholar
  48. 48.
    Takaoka H, Takeuchi M, Odake M et al. Comparison of hemodynamic determinants for myocardial oxygen consumption under different contractile states in human ventricle. Circulation 1993;87:59–69PubMedCrossRefGoogle Scholar
  49. 49.
    Kameyama T, Asanoi H, Ishizaka S et al. Energy conversion efficiency in human left ventricle. Circulation 1992;85:968–988CrossRefGoogle Scholar
  50. 50.
    Yada T, Richmond KN, Van Bibber R, Kroll K, Feigl EO. Role of adenosine in local metabolic coronary vasodilation. Am J Physiol 1999;276:H1425–33PubMedGoogle Scholar
  51. 51.
    Hess DS, Bache RJ. Transmural distribution of myocardial blood flow during systole in the awake dog. Circ Res 1976;38:5–15PubMedCrossRefGoogle Scholar
  52. 52.
    Bache RJ, Cobb FR. Effect of maximal coronary vasodilation on transmural myocardial perfusion during tachycardia in the awake dog. Circ Res 1977;41:648–53PubMedCrossRefGoogle Scholar
  53. 53.
    Bell JR, Fox AC. Pathogenesis of subendocardial ischemia. Am J Med Sci 1974;268:3–13PubMedCrossRefGoogle Scholar
  54. 54.
    Jones CJ, Kuo L, Davis MJ, Chilian WM. Myogenic and flow-dependent control mechanisms in the coronary microcirculation. Basic Res Cardiol 1993; 88:2–10PubMedGoogle Scholar
  55. 55.
    Rajagopalan S, Dube S, Canty JM. Regulation of coronary diameter by myogenic mechanisms in arterial microvessels greater than 100 microns in diameter. Am J Physiol 1995;268:H788–H793PubMedGoogle Scholar
  56. 56.
    Little WC, Cheng CP, Mumma M, Igarashi Y, Vinten-Johansen J, Johnston WE. Comparison of measures of left ventricular contractile performance derived from pressure-volume loops in conscious dogs. Circulation 1989;80:1378–87PubMedCrossRefGoogle Scholar
  57. 57.
    Kass DA, Maughan WL, Guo ZM, Kono A, Sunagawa K, Sagawa K. Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimental and theoretical analysis based on pressure-volume relationships. Circulation 1987;76:1422–3PubMedCrossRefGoogle Scholar
  58. 58.
    Grandin C, Wijns W, Melin JA, Bol A, Robert AR, Heyndrickx GR et al. Delineation of myocardial viability with PET. J Nucl Med 1995;36(9):1543–52Google Scholar
  59. 59.
    Yamamoto Y, de Silva R, Rhodes CG, Araujo LI, Iida H, Rechavia E et al. A new strategy for the assessment of viable myocardium and regional myocardial blood flow using 15O-water and dynamic positron emission tomography. Circulation 1992;86:167–78PubMedCrossRefGoogle Scholar
  60. 60.
    Marinho NV, Keogh BE, Costa DC, Lammerstma AA, Ell PJ, Camici PG. Pathophysiology of chronic left ventricular dysfunction. New insights from the measurement of absolute myocardial blood flow and glucose utilization. Circulation 1996;93(4):737–44CrossRefGoogle Scholar
  61. 61.
    Ghaleh B, Shen YT, Vatner SF. Spatial heterogeneity of myocardial blood flow presages salvage versus necrosis with coronary artery reperfusion in conscious baboons. Circulation 1996;94:2210–5PubMedCrossRefGoogle Scholar
  62. 62.
    Bassingthwaighte JB, Li Z. Heterogeneities in myocardial flow and metabolism: exacerbation with abnormal excitation. Am J Cardiol 1999;83:7H–12HPubMedCrossRefGoogle Scholar
  63. 63.
    Camici PG, Wijns W, Borgers M, De Silva R, Ferrari R, Knuuti J et al. Pathophysiological mechanisms of chronic reversible left ventricular dysfunction due to coronary artery disease (hibernating myocardium). Circulation 1997;96:3205–14PubMedCrossRefGoogle Scholar
  64. 64.
    Gerber BL, Vanoverschelde JL, Bol A, Michel C, Labar D, Wijns W et al. Myocardial blood flow, glucose uptake, and recruitment of inotropic reserve in chronic left ventricular ischemic dysfunction. Implications for the pathophysiology of chronic myocardial hibernation. Circulation 1996;94:651–9PubMedCrossRefGoogle Scholar
  65. 65.
    Marin-Neto JA, Dilsizian V, Arrighi JA, Freedman NM, Perrone-Filardi P, Bacharach SL et al. Thallium reinjection demonstrates viable myocardium in regions with reverse redistribution. Circulation 1993;88:1736–45PubMedCrossRefGoogle Scholar
  66. 66.
    Vatner SF. Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 1980;47:201–7PubMedCrossRefGoogle Scholar
  67. 67.
    Gallagher KP, Matsuzaki M, Koziol JA, Kemper WS, Ross J. Regional myocardial perfusion and wall thickening during ischemia in conscious dogs. Am J Physiol 1984;247:H727–38PubMedGoogle Scholar
  68. 68.
    Bonow RO. Contractile reserve and coronary blood flow reserve in collateral-dependent myocardium. J Am Coll Cardiol 1999;33:705–7PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Pedro Marcos-Alberca
  • Manuel Rey Pérez
  • Rosa Rábago
  • José Luis Zamorano
  • Miguel Angel García Fernández

There are no affiliations available

Personalised recommendations