Hydrocephalus: Intracranial Pressure, Myelination, and Neurodevelopment

  • Patrick W. Hanlo
  • Rob H. J. M. Gooskens
  • Peter W. Vandertop


The actual importance of hydrocephalus as a neurological disorder is severely underestimated. The incidence of congenital and infantile hydrocephalus is reported to be 0.48–0.81 per 1000 live births and stillbirths [7,17]. Cases of secondary hydrocephalus are seldom included in the incidence and prevalence figures.


Psychomotor Development Brain Maturation White Matter Damage Intracranial Compliance Shunt Implantation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barkovich AJ: Normal development of the neonatal and infant brain. In: Barkovich AJ (ed) Pediatric neuroimaging. Raven Press, New York, pp 5–34, 1990Google Scholar
  2. 2.
    Barkovich AJ, Kjos BO, Jackson DE, et al: Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180, 1988PubMedGoogle Scholar
  3. 3.
    Bayley N: Bayley scales of infant development. Psychological Corporation, New York, 1969Google Scholar
  4. 4.
    Benda CE: Mongolism. In: Minkler J (ed) Pathology of the nervous system. McGraw-Hill, New York, pp 1361–1371, 1971Google Scholar
  5. 5.
    Benes FM: Myelination of cortical hippocampal relays during late adolescence. Schizophrenia Bull 15: 585–593, 1989CrossRefGoogle Scholar
  6. 6.
    Bird CR, Hedberg M, Drayer BP, et al: MR assessment of myelination in infants and children: usefulness of marker sites. AJNR Am J Neuroradiol 10:731–740, 1989PubMedGoogle Scholar
  7. 7.
    Blackburn BL, Fineman RM: Epidemiology of congenital hydrocephalus in Utah, 1940–1979: Report of an iatrogenically related “epidemic”. Am J Med Genet 52:123, 1994PubMedCrossRefGoogle Scholar
  8. 8.
    Brody BA, Kinney HC, Kloman AS, Gilles FH Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46:283–301, 1987PubMedCrossRefGoogle Scholar
  9. 9.
    Chase HP: The effects of intrauterine and postnatal undernutrition on normal brain development. Ann N Y Acad Sci 205:231–244, 1973PubMedCrossRefGoogle Scholar
  10. 10.
    Chumas PD, Drake JM, Del Bigio MR, et al: Anaerobic glycolysis preceding white matter destruction in experimental neonatal hydrocephalus. J Neurosurg 80:491–501, 1994PubMedCrossRefGoogle Scholar
  11. 11.
    Dambska M, Laure-Kamionowska M: Myelination as a parameter of normal and retarded brain maturation. Brain Dev 12: 214–220, 1990PubMedCrossRefGoogle Scholar
  12. 12.
    Del Bigio MR: Neuropathological changes caused by hydrocephalus. Acta Neuropathol 85:573–585, 1993PubMedCrossRefGoogle Scholar
  13. 13.
    Del Bigio MR, Da Silva MC, Drake JM, et al: Acute and chronic cerebral white matter damage in neonatal hydrocephalus. Can J Neurol Sci 21:299–305, 1994PubMedGoogle Scholar
  14. 14.
    Del Bigio MR, Kanfer JN, Zhang YW: Myelination delay in the cerebral white matter of immature rats with kaolin-induced hydrocephalus is reversible. J Neuropathol Exp Neurol 56:1053–1066, 1997PubMedCrossRefGoogle Scholar
  15. 15.
    Di Rocco C, Caldarelli M, Ceddia A: “Occult” hydrocephalus in children. Child’s Nerv Syst 5:71–75, 1989CrossRefGoogle Scholar
  16. 16.
    Ferneil E, Hagberg G, Hagberg B: Infantile hydrocephalus: the impact of enhanced preterm survival. Acta Paediatr 79:1080–1086, 1990CrossRefGoogle Scholar
  17. 17.
    Ferneil E, Hagberg G, Hagberg B: Infantile hydrocephalus epidemiology: An indicator of enhanced survival. Arch Dis Child Fetal Neonatal Ed 70:123–128, 1994CrossRefGoogle Scholar
  18. 18.
    Flechsig P: Developmental (myelogenetic) localisation of the cerebral cortex in the human subject. Lancet 2:1027–1029, 1901CrossRefGoogle Scholar
  19. 19.
    Flechsig P: Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage. Thieme, Leipzig, 1920Google Scholar
  20. 20.
    Fletcher JM, McCauley SR, Brandt ME, et al: Regional brain tissue composition in children with hydrocephalus. Relationships with cognitive development. Arch Neurol 53, 549–557, 1996PubMedCrossRefGoogle Scholar
  21. 21.
    Fujii Y, Konishi Y, Kuriyama M, et al: MRI assessment of myelination patterns in high risk infants. Pediatr Neurol 9:194–197, 1993PubMedCrossRefGoogle Scholar
  22. 22.
    Gadson DR, Variend S, Emery JL: The effect of hydrocephalus upon the myelination of the corpus callosum. Eur J Pediatr Surg 25:311–317, 1978Google Scholar
  23. 23.
    Gadson DR, Variend S, Emery JL: Myelination of the corpus callosum. II. The effect of relief of hydrocephalus upon the processes of myelination. Eur J Pediatr Surg 28: 314–321, 1979Google Scholar
  24. 24.
    Grodd W: Normal and abnormal patterns of myelin development of the fetal and infantile human brain using magnetic resonance imaging. Curr Opin Neurol Neurosurg 6:393–397, 1993PubMedGoogle Scholar
  25. 25.
    Guidetti B, Occhipinti E, Riccio A: Ventriculo-atrial shunt in 200 cases of non-tumoral hydrocephalus in children: remarks on the diagnostic criteria, postoperative complications and long-term results. Acta Neurochir 21:295–308, 1969CrossRefGoogle Scholar
  26. 26.
    Guit GL, Bor M van de, Ouden L den, et al: Prediction of neuro-developmental outcome in the preterm infant: MR-staged myelination compared with cranial US. Radiology 175:107–109, 1990PubMedGoogle Scholar
  27. 27.
    Hanlo PW: Non-invasive intracranial pressure monitoring in infantile hydrocephalus and the relationship with transcranial Doppler, myelination and outcome. Thesis, Utrecht, The Netherlands, 1995Google Scholar
  28. 28.
    Hanlo PW, Gooskens RHJM, Faber JAJ, et al: Relationship between anterior fontanelle pressure measurements and clinical signs in infantile hydrocephalus. Child’s Nerv Syst 12:200–209, 1996CrossRefGoogle Scholar
  29. 29.
    Kaiser AM, Whitelaw AGL: Intracranial pressure estimation by palpation of the anterior fontanelle. Arch Dis Child 62:516–517, 1987PubMedCrossRefGoogle Scholar
  30. 30.
    Kinney HC, Brody BA, Kloman AS, et al: Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 47:217–234, 1988PubMedCrossRefGoogle Scholar
  31. 31.
    Kirkpatrick M, Engleman H, Minns RA: Symptoms and signs of progressive hydrocephalus. Arch Dis Child 64: 124–128, 1989PubMedCrossRefGoogle Scholar
  32. 32.
    Konishi Y, Hayakawa K, Kuriyama M, et al: Developmental features of the brain in preterm and fullterm infants on MR imaging. Early Hum Dev 34:155–162, 1993PubMedCrossRefGoogle Scholar
  33. 33.
    Langworthy OR: Development of behavior patterns and myelination of the nervous system of the human fetus and infant. Contrib Embryol Carnegie Inst 24:3–57, 1933Google Scholar
  34. 34.
    Leviton A, Gilles F: Ventriculomegaly, delayed myelination, white matter hypoplasia, and periventricular leukomalacia: how are they related? Pediatr Neurol 15:127–136, 1996PubMedCrossRefGoogle Scholar
  35. 35.
    Longatti PL, Canova G, Guida F, et al: The myelin basic protein: a reliable marker of actual cerebral damage in hydrocephalus. J Neurosurg Sci 37: 87–90, 1993PubMedGoogle Scholar
  36. 36.
    Maezawa M, Seki T, Imura S, et al: Magnetic resonance signal intensity ratio of gray/white matter in children. Quantitative assessment in developing brain. Brain Dev 15:198–204, 1993PubMedCrossRefGoogle Scholar
  37. 37.
    Maixner WJ, Morgan MK, Besser M, et al: Ventricular volume in infantile hydrocephalus and its relationship to intracranial pressure and cerebrospinal fluid clearance before and after treatment. A preliminary study. Pediatr Neurosurg 16:191–196, 1991CrossRefGoogle Scholar
  38. 38.
    Martin E, Kikinis R, Zuerrer M, et al: Developmental stages of human brain: an MR study. J Comput Assist Tomogr 12:917–922, 1988PubMedCrossRefGoogle Scholar
  39. 39.
    Martin E, Boesch C, Zuerrer M, et al: MR imaging of brain maturation in normal and developmentally handicapped children. J Comput Assist Tomogr 14: 685–692, 1990PubMedCrossRefGoogle Scholar
  40. 40.
    McAllister II JP, Chovan P: Neonatal hydrocephalus. Mechanisms and consequences. Neurosurg Clin North Am 9:73–93, 1998Google Scholar
  41. 41.
    Minns RA, Goh D, Pye SD, et al: A volume-blood flow velocity response (VFR) relationship derived from CSF compartment challenge as an index of progression of infantile hydrocephalus. In: Matsumoto S, Tamaki N (eds) Hydrocephalus: pathogenesis and treatment. Springer, Tokyo, Berlin Heidelberg, pp 270–278, 1991Google Scholar
  42. 42.
    Oi S, Ijichi A, Matsumoto S: Immunohistochemical evaluation of neuronal maturation in untreated fetal hydrocephalus. Neurol Med Chir 29:989–994, 1989CrossRefGoogle Scholar
  43. 43.
    Peters RJA, Hanlo PW, Gooskens RHJM, et al: Non-invasive ICP monitoring in infants: the Rotterdam Teletransducer revisited. Child’s Nerv Syst 11: 207–213, 1995CrossRefGoogle Scholar
  44. 44.
    Rubin RC, Hochwald GM, Tiell M, et al: Hydrocephalus: I. Histological and ultrastructural changes in the pre-shunted cortical mantle. Surg Neurol 5:109–114, 1976PubMedGoogle Scholar
  45. 45.
    Rubin RC, Hochwald GM, Tiell M, et al: Hydrocephalus: II. Cell number and size, and myelin content of the pre-shunted cerebral cortical mantle. Surg Neurol 5: 115–118, 1976PubMedGoogle Scholar
  46. 46.
    Sato H, Sato N, Tamaki N, et al: Threshold of cerebral perfusion pressure as a prognostic factor in hydrocephalus during infancy. Child’s Nerv Syst 4, 274–278, 1988CrossRefGoogle Scholar
  47. 47.
    Squires LA, Krishnamoorthy KS, Natowicz MR: Delayed myelination in infants and young children: radiographic and clinical correlates. J Child Neurol 10:100–104:1995PubMedCrossRefGoogle Scholar
  48. 48.
    Staudt M, Schropp C, Staudt F, et al: Myelination of the brain in MRI: a staging system. Pediatr Radiol 23:169–176, 1993PubMedCrossRefGoogle Scholar
  49. 49.
    Takashima S, Becker LE: Developmental neuropathology in bronchopulmonary dysplasia: alteration of glial fibrillary acidic protein and myelination. Brain Dev 6:451–457, 1984PubMedCrossRefGoogle Scholar
  50. 50.
    Tilney F, Casamajor L: Myelinogeny as applied to the study of behavior. Arch Neurol Psychiatry 12:1–66, 1924CrossRefGoogle Scholar
  51. 51.
    van der Knaap MS, Valk J: MR imaging of the various stages of normal myelination during the first year of life. Neuroradiology 31:459–470, 1990PubMedCrossRefGoogle Scholar
  52. 52.
    van der Knaap MS, Valk J, Bakker CJ, et al: Myelination as an expression of the functional maturity of the brain. Dev Med Child Neurol 33: 849–857, 1991PubMedCrossRefGoogle Scholar
  53. 53.
    van der Knaap MS, Bakker CJ, Faber JAJ, et al: Comparison of skull circumference and linear measurements with CSF volume MR measurements in hydrocephalus. J Comput Assist Tomogr 16:737–743, 1992PubMedCrossRefGoogle Scholar
  54. 54.
    van der Meulen BF, Smrkovsky M: Handleiding MOS 2.5–8.5, McCarthy Ontwikkelings Schalen. Swets and Zeitlinger, Lisse, 1986Google Scholar
  55. 55.
    Villani R, Tomei G, Gaini SM, et al: Long-term outcome in aqueductal stenosis. Child’s Nerv Syst 11:180–185, 1995CrossRefGoogle Scholar
  56. 56.
    Vogt O: Quelques considerations generates sur la myelo-architecture du lobe frontal. Rev Neurol 20:405–420, 1910Google Scholar
  57. 57.
    Von Monakow C: über die Projections-und die Associationscentren im Grosshirn. Monatschr Psychiatrie 8: 405–420, 1900CrossRefGoogle Scholar
  58. 58.
    Vries LS de, Dubowitz LMS, Pennock JM, et al: Extensive cystic leukomalacia: correlation of cranial ultrasound, magnetic resonance imaging and clinical findings in sequential studies. Clin Radiol 40:158–166, 1989PubMedCrossRefGoogle Scholar
  59. 59.
    Wiggins RC: Myelin development and nutritional insufficiency. Brain Res Rev 4:151–175; 1982CrossRefGoogle Scholar
  60. 60.
    Wisniewski KE, Schmidt-Sidor B: Postnatal delay of myelin formation in brains from Down syndrome infants and children. Clin Neuropathol 8:55–62, 1989PubMedGoogle Scholar
  61. 61.
    Yakovlev PI, Lecours AR: The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–70, 1967Google Scholar

Copyright information

© Springer-Verlag Italia 2005

Authors and Affiliations

  • Patrick W. Hanlo
    • 1
  • Rob H. J. M. Gooskens
    • 2
  • Peter W. Vandertop
    • 3
  1. 1.Department of Neurosurgery/Pediatric NeurosurgeryUniversity Medical Center UtrechtThe Netherlands
  2. 2.Child NeurologyUniversity Medical Center UtrechtThe Netherlands
  3. 3.Department of Neurosurgery, University HospitalVrije Universiteit AmsterdamThe Netherlands

Personalised recommendations