Advertisement

Classification and Definition of Hydrocephalus: Origin, Controversy, and Assignment of the Terminology

  • Shizuo Oi
Chapter

Abstract

Since hydrocephalus is not a single pathological disease, but a pathophysiological condition of disturbed dynamics of the cerebrospinal fluid (CSF) with or without underlying disease, its classification is often complex and confused. There are numerous classification categories, parameters, and criteria (Table 1). In each patient hydrocephalus can be given a classification, to which are added further individual qualifying parameters and variables, so that the full range of classified subtypes of hydrocephalus can be uncountable: congenital-fetal/progressive/high-pressure/non-communicating/idiopathic/macrocephalic/internal-triventricular hydrocephalus, etc.

Keywords

Shunt System Aqueductal Stenosis Congenital Hydrocephalus Subdural Effusion External Hydrocephalus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams RD, Fisher CM, Hakim S, et al: Symptomatic occult hydrocephalus with normal cerebrospinal fluid pressure. N Engl J Med 273:117–126, 1965PubMedCrossRefGoogle Scholar
  2. 2.
    Aikawa H, Kobayashi S, Suzuki K: Aqueductal lesions in 6-aminonicotinamide-treated suckling mice. Acta Neuropathol (Berl) 71:243–250, 1986CrossRefGoogle Scholar
  3. 3.
    Anderson H, Elfverson J, Svendsen P: External hydrocephalus in infants. Child’s Brain 11:398–402, 1984Google Scholar
  4. 4.
    Babapour B, Oi S, Klekamp J, et al: Congenital hydrocephalus and associated hydromyelia — a pathological study in experimental rat model. Nervous System in Children 27:243–249, 2002Google Scholar
  5. 5.
    Bakey RA, Sweeney KM, Wood JH: Pathophysiology of cerebrospinal fluid in head injury. Part 1: Pathological changes in cerebrospinal fluid solute composition after traumatic injury. Neurosurgery 18:234–243, 1986CrossRefGoogle Scholar
  6. 6.
    Baxi L, Warren W, Collins MH, et al: Early detection of caudal regression syndrome with transvaginal scanning. Obstet Gynecol 75:486–489, 1990PubMedGoogle Scholar
  7. 7.
    Berry RJ: The inheritance and pathogenesis of hydrocephalus-3 in the mouse. J Pathol Bacteriol 81:157–167, 1961CrossRefGoogle Scholar
  8. 8.
    Broit A, Sidman RJ: New mutant mouse with communicating hydrocephalus and secondary aqueductal stenosis. Acta Neuropathol (Berl) 21:316–331, 1972CrossRefGoogle Scholar
  9. 9.
    Bronshtein M, Zimmer E, Gershoni-Baruch R, et al: First-and second-trimester diagnosis of fetal ocular defects and associated anomalies: report of eight cases. Obstet Gynecol 77:443–449, 1991PubMedGoogle Scholar
  10. 10.
    Carton CA, Perry JH, Winter A, et al: Studies of hydrocephalus in C57 blank mice. Trans Am Neurol Assoc 81:147–149, 1956Google Scholar
  11. 11.
    Clark SL, DeVore GR, Sabey PL: Prenatal diagnosis of cysts of the fetal choroid plexus. Obstet Gynecol 72:585–587, 1988PubMedGoogle Scholar
  12. 12.
    Clark FH: Hydrocephalus: a hereditary character in the house mouse. Proc Natl Acad Sci USA 18:654–656, 1932PubMedCrossRefGoogle Scholar
  13. 13.
    Coheh I: Chronic subdural accumulations of cerebrospinal fluid after cranial trauma. Report of a case. Arch Neurol Psychiatr 18:709–723, 1927CrossRefGoogle Scholar
  14. 14.
    Comstock CH, Culp D, Gonzalez J, et al: Agenesis of the corpus callosum in the fetus: its evolution and significance. J Ultrasound Med 4:613–616, 1985PubMedGoogle Scholar
  15. 15.
    D’Agostino AN, Kernohan JW, Brown JR: The Dandy-Walker syndrome. J Neuropathol Exp Neurol 22:450–470, 1963CrossRefGoogle Scholar
  16. 16.
    Dandy WE: Extirpation of the choroid plexus of the lateral ventricles in communicating hydrocephalus. Ann Surg 68:569–579, 1918PubMedCrossRefGoogle Scholar
  17. 17.
    Dandy WE: An operative procedure for hydrocephalus. Bull Johns Hopkins Hosp 33:189–190, 1922Google Scholar
  18. 18.
    Davis L: Neurological surgery. Lea & Febiger, Philadelphia 1936Google Scholar
  19. 19.
    Day RE, Schutt WH: Normal children with large heads: benign familial megalocephaly. Arch Dis Child 54:512–517, 1979PubMedCrossRefGoogle Scholar
  20. 20.
    Deol MS: The origin of the abnormalities of inner ear in Dreher mice. J Embryol Exp Morphol 12:727–733, 1964PubMedGoogle Scholar
  21. 21.
    Depp R, Sabbagha RE, Brown JT, et al: Fetal surgery for hydrocephalus: successful in utero ventriculoamniotic shunt for Dandy-Walker syndrome. Obstet Gynecol 61:710–714, 1983PubMedGoogle Scholar
  22. 22.
    Dinh DH, Wright RM, Hanigan WC: The use of magnetic resonance imaging for the diagnosis of fetal intracranial anomalies. Childs Nerv Syst 6:212–215, 1990PubMedCrossRefGoogle Scholar
  23. 23.
    Dohrmann GJ: Cervical spinal cord in experimental hydrocephalus. J Neurosurg 37:538–542, 1972PubMedCrossRefGoogle Scholar
  24. 24.
    Faulhauer K, Donauer E: Experimental hydrocephalus and hydrosyringomyelia in the cat. Radiological findings. Acta Neurochir (Wien) 74:72–80, 1985CrossRefGoogle Scholar
  25. 25.
    Feigir RD, Dodge PR: Bacterial meningitis: New concepts of pathophysiology and neurologic sequelae. Pediatr Clin North Am 23:541–556, 1976Google Scholar
  26. 26.
    Fernell E, Uvebrant P, von Wendt L: Overt hydrocephalus at birth — origin and outcome. Child’s Nerv Syst 3:350–353, 1987CrossRefGoogle Scholar
  27. 27.
    Gardner WJ: Hydrodynamic mechanism of syringomyelia: its relationship to myelocele. J Neursurg Psychiatry 28:247–259, 1965CrossRefGoogle Scholar
  28. 28.
    Gitlin D: Pathogenesis of subdural collections of fluid. Pediatrics 16:345–352, 1955PubMedGoogle Scholar
  29. 29.
    Granholm L, Svendgaad N: Hydrocephalus following traumatic head injuries. Scand J Rehab Med 4:31–34, 1972Google Scholar
  30. 30.
    Green MC: The developmental effects of congenital hydrocephalus (ch) in the mouse. Dev Biol 23:585–608, 1970PubMedCrossRefGoogle Scholar
  31. 31.
    Grunberg H: Congenital hydrocephalus in the mouse: a case of spurious pleiotropism. J Genet 45:1–21, 1943CrossRefGoogle Scholar
  32. 32.
    Gruneberg H: Two new mutant genes in the house mouse. J Genet 45:22–28, 1943CrossRefGoogle Scholar
  33. 33.
    Gutierrez FA, McLone DG, Raimondi AJ: Physiology and a new treatment of chronic subdural hematoma in children. Child’s Brain 5:216–232, 1979PubMedGoogle Scholar
  34. 34.
    Hanigan WC, Gibson J, Kleopoulos NJ, et al: Medical imaging of fetal ventriculomegaly. J Neurosurg 64:575–580, 1986PubMedCrossRefGoogle Scholar
  35. 35.
    Hayashi M, Kabayashi H, Kawano H, et al: ICP patterns and isotope cisternography in patients with communicating hydrocephalus following rupture of intracranial aneurysm. J Neurosurg 62:220–226, 1985PubMedCrossRefGoogle Scholar
  36. 36.
    Jensen F, Jensen FT: Acquired hydrocephalus I. A clinical analysis of 160 patients studied for hydrocephalus. Acta Neurochir 46:119–133, 1977CrossRefGoogle Scholar
  37. 36A.
    Hakim S: Some observation on CSF pressure. Hydrocephalic syndrome in adults with “normal” CSF pressure: recognition of a new syndrome [Spanish]. Thesis no. 957, Javeriana University School of Medicine, Bogota, Colombia, 1964Google Scholar
  38. 37.
    Higashi K, Noda Y, Mufune H: Pathological studies on the brain of congenital hydrocephalic rats. Shoni No Noshinkei 12:1–9, 1987Google Scholar
  39. 38.
    Hill LM, Martin JG, Fries J, et al: The role of the transcerebellar view in the detection of fetal central nervous system anomaly. Am J Obstet Gynecol 164:1220–1224, 1991PubMedGoogle Scholar
  40. 39.
    Hirsch JF: Surgery of hydrocephalus: past, present and future. Acta Neurochir (Wien) 116:155–160, 1992CrossRefGoogle Scholar
  41. 40.
    Hoff J, Bates E, Barnes B, et al: Traumatic subdural hygroma. J Trauma 13:870–876, 1973PubMedGoogle Scholar
  42. 41.
    Hoffman-Tretin JC, Horoupian DS, Koenigsberg M, et al: Lobar holoprosencephaly with hydrocephalus: antenatal demonstration and differential diagnosis. J Ultrasound Med 5:691–697, 1986PubMedGoogle Scholar
  43. 42.
    Johnston IH, Howman-Giles R, Whittle IR: The arrest of treated hydrocephalus in children. A radionuclide study. J Neurosurg 61:752–756, 1984PubMedCrossRefGoogle Scholar
  44. 43.
    Kalter H: Experimental mammalian teratogenesis, a study of galactoflavin-induced hydrocephalus in mice. J Morphol 112:303–317, 1963PubMedCrossRefGoogle Scholar
  45. 44.
    Kausch W: Die Behandlung des Hydrocephalus der kleinen Kinder. Arch Klin Chir 87:709–715, 1908Google Scholar
  46. 45.
    Kelley RI, et al: X-linked recessive aqueductal stenosis without macrocephaly. Clin Genet 33:390–394, 1988PubMedCrossRefGoogle Scholar
  47. 46.
    Kendall B, Holland I: Benign communicating hydrocephalus in children. Neuroradiology 21:93–96, 1981PubMedCrossRefGoogle Scholar
  48. 47.
    Kirkinen P, Serlo W, Jouppila P, et al: Long-term outcome of fetal hydrocephaly. J Child Neurol 11:189–192, 1996PubMedCrossRefGoogle Scholar
  49. 48.
    Kohn DF, Chinookoswong N, Chou SM: A new model of congenital hydrocephalus in the rat. Acta Neuropathol (Berl) 54:211–218, 1981CrossRefGoogle Scholar
  50. 49.
    Koyama T: Erzeugung won Missbildungen im Gehirn durch Methyl-Nitrose-Harnstoff und Äthyl-Nitrose-Harnstoff an SD-JCL Ratten. Arch Jpn Chir 39:233–254, 1970Google Scholar
  51. 50.
    Masters C, Alpers M, Kakulas B: Pathogenesis of reovirus type1 hydrocephalus in mice. Significance of aqueductal changes. Arch Neurol 34:18–28, 1977PubMedCrossRefGoogle Scholar
  52. 51.
    McGahan JP, Phillips HE: Ultrasonic evaluation of the size of the trigone of the fetal ventricle. J Ultrasound Med 2:315–319, 1983PubMedGoogle Scholar
  53. 52.
    McGahan JP, Haesslein HC, Meyers M, et al: Sonographic recognition of in utero intraventricular hemorrhage. AJR Am J Roentgenol 142:171–173, 1984PubMedGoogle Scholar
  54. 53.
    Ment LR, Cuncan CC, Geehr R: Benign enlargement of the subarachnoid spaces in the infant. J Neurosurg 54:504–508, 1981PubMedCrossRefGoogle Scholar
  55. 54.
    Meyers CA, Levin HS, Eisenberg HM, et al: Early versus late lateral ventricular enlargement following closed head injury. J Neurol Neurosurg Psychiatr 46:1092–1097, 1983PubMedCrossRefGoogle Scholar
  56. 55.
    Michejda M, Patronas N, Di Chiro G, et al: Fetal hydrocephalus. II. Amelioration of fetal porencephaly by in utero therapy in nonhuman primates. JAMA 251:2548–2552, 1984PubMedCrossRefGoogle Scholar
  57. 56.
    Michejda M, Queenan JT, McCullough D: Present status of intrauterine treatment of hydrocephalus and its future. Am J Obstet Gynecol 155:873–882, 1986PubMedGoogle Scholar
  58. 57.
    Mixter WJ: Ventriculoscopy and puncture of the floor of the third ventricle. Preliminary report of a case. Boston Med Surg J 188:277–278, 1923CrossRefGoogle Scholar
  59. 58.
    Monteagudo A, Reuss ML, Timor-Tritsch IE: Imaging the fetal brain in the second and third trimesters using transvaginal sonography. Obstet Gynecol 77:27–32, 1991PubMedGoogle Scholar
  60. 59.
    Mori T: A study of the tellurium-induced experimental hydrocephalus. Neuropathology 6:355–365, 1985Google Scholar
  61. 60.
    Nevin NC: Neuropathological changes in the white matter following head injury. J Neuropathol Exp Neurol 26:66–84, 1967CrossRefGoogle Scholar
  62. 61.
    Nishizaki T, Tamaki N, Nishida Y, et al: Bilateral inter nuclear ophthalmoplegia due to hydrocephalus: a case report. Neurosurgery 17:822–825, 1985PubMedCrossRefGoogle Scholar
  63. 62.
    Nulsen FE, Spitz EB: Treatment of hydrocephalus by direct shunt from ventricle to jugular vein. Surg Forum 2:399–403, 1951Google Scholar
  64. 63.
    Ohba N: Formation of embryonic abnormalities of the mouse by a viral infection of mother animals. Acta Pathol Jpn 8:127–138, 1958Google Scholar
  65. 64.
    Oi S, Matsumoto S: Pathophysiology of nonneoplastic obstruction of the foramen of Monro and progressive unilateral hydrocephalus. Neurosurgery 17:891–896, 1985PubMedCrossRefGoogle Scholar
  66. 65.
    Oi S, Matsumoto S: Slit ventricles as a cause of isolated ventricles after shunting. Child’s Nerv Syst 1:189–193, 1985CrossRefGoogle Scholar
  67. 66.
    Oi S, Yamada H, Sasaki K, et al: [Diagnosis and treatment of fetal hydrocephalus. Problems in evaluation of the hydrocephalic state and selection for intrauterine shunt procedure.] Neurol Med Chir 25:195–202, 1985 (Jpn)CrossRefGoogle Scholar
  68. 67.
    Oi S, Matsumoto S: Isolated fourth ventricle. J Pediatr Neurosci 2:125–133, 1986Google Scholar
  69. 68.
    Oi S, Matsumoto S: Pathophysiology of aqueductal obstruction in isolated IV ventricle after shunting. Child’s Nerv Syst 2:282–286, 1986CrossRefGoogle Scholar
  70. 69.
    Oi S, Matsumoto S: Dynamic change in intracranial pressure in slit-like ventricles and isolated ventricles in childhood hydrocephalus after shunt placement. In: Ishii S (ed) Hydrocephalus. Excerpta Medica, Tokyo, pp 135–147, 1986Google Scholar
  71. 70.
    Oi S, Shose Y, Yamada H, et al: CSF dynamics in children. A quantitative analysis of the relativity of major and minor pathways of cerebrospinal fluid dynamics. CT Kenkyu (Jpn) 8:153–162, 1986Google Scholar
  72. 71.
    Oi S, Matsumoto S: Infantile hydrocephalus and the slit ventricle syndrome in early infancy. Child’s Nerv Syst 3:145–150, 1987CrossRefGoogle Scholar
  73. 72.
    Oi S, Matsumoto S: Post-traumatic hydrocephalus in children: pathophysiology and classification. J Pediatr Neurosci 3:133–147, 1987Google Scholar
  74. 73.
    Oi S, Matsumoto S: Natural history of subdural effusion in infants: prospective study of 87 cases. J Pediatr Neurosci 4:15–24, 1988Google Scholar
  75. 74.
    Oi S, Yamada Y, Matsumoto S: A prenatal CSF shunt procedure for fetal hydrocephalus, animal experimental model: pressure dynamics of intrauterine hydrocephalus and fetal ventriculo-mater peritoneal (FV-MP) shunt. Shoni No Noshinke (Jpn) 14:215–221, 1989Google Scholar
  76. 75.
    Oi S, Tamaki N, Matsumoto S, et al: Prenatal neuroimaging in fetal dysraphism. Neurosonology 3:90–96, 1990CrossRefGoogle Scholar
  77. 76.
    Oi S, Tamaki N, Kondo T, et al: Massive congenital intracranial teratoma diagnosed in utero. Child’s Nerv Syst 6:459–461, 1990CrossRefGoogle Scholar
  78. 77.
    Oi S, Kudo H, Yamada H, et al: Hydromyelic hydrocephalus: correlation of hydromyelia with various stages of hydrocephalus in postshunt isolated compartments. J Neurosurg 74:371–379, 1991PubMedCrossRefGoogle Scholar
  79. 78.
    Oi S: Is the hydrocephalic state progressive to become irreversible during fetal life? Surg Neurol 37:66–68, 1992PubMedCrossRefGoogle Scholar
  80. 79.
    Oi S, Sato S, Matsumoto S: A new classification of congenital hydrocephalus: perspective classification of congenital hydrocephalous (PCCH) and postnatal prognosis. Part 1. A proposal of a new classification of fetal/neonatal/ /infantile hydrocephalus based on neuronal maturation process and chronological changes. Jpn J Neurosurg (Jpn) 3:122–127, 1994Google Scholar
  81. 80.
    Oi S, Matsumoto S, Katayama K, et al: Pathophysiology and postnatal outcome of fetal hydrocephalus. Child’s Nerv Syst 6:338–345, 1990CrossRefGoogle Scholar
  82. 81.
    Oi S, Hidaka M, Matsuzawa K, et al: Intractable hydrocephalus in a form of progressive and irreversible “hydrocephalus-parkinsonism complex”: A case report. Curr Trends Hydrocephalus (Tokyo) 5:43–49, 1995Google Scholar
  83. 82.
    Oi S: Recent advances in neuroendoscopic surgery: realistic indications and clinical achievement. Crit Rev Neurosurg 6:64–72, 1996Google Scholar
  84. 83.
    Oi S, Hidaka M, Togo K, et al: Neuro-endoscopie surgery, part 3: Characteristics of rigid, semi-rigid and flexible/ steerable endoscopy: analysis in cadaver dissection, experimental animal model and clinical Application. Curr Trends Hydrocephalus (Tokyo) 5:57–66, 1996Google Scholar
  85. 84.
    Oi S, Yamada H, Sato O, Matsumoto S: experimental models of congenital hydrocephalus and comparable clinical problems in the fetal and neonatal periods. Child’s Nerv Syst 12:292–302, 1996CrossRefGoogle Scholar
  86. 85.
    Oi S, Honda Y, Hidaka M, et al: Intrauterine high-resolusion magnetic resonance imaging in fetal hydrocephalus and prenatal estimation of postnatal outcomes with “perspective classification”. J Neurosurg 88:685–694, 1998PubMedCrossRefGoogle Scholar
  87. 86.
    Oi S: Hydrocephalus chronology in adults: confused state of the terminology. Crit Rev Neurosurg 8:346–356, 1998PubMedCrossRefGoogle Scholar
  88. 87.
    Oi S, Hidaka M, Honda Y, et al: Neuroendoscopic surgery for specific forms of hydrocephalus. Child’s Nerv Syst 15:56–68, 1999CrossRefGoogle Scholar
  89. 88.
    Oi S, Shimoda M, Shibata M, et al: Pathophysiology of long-standing overt ventriculomegaly in adults (LOVA). J Neurosurg 92:933–940, 2000PubMedCrossRefGoogle Scholar
  90. 89.
    Oi S, Babapour B, Klekamp J, et al: Prerequisites for fetal neurosurgery: management of central nervous system anomalies toward the 21st century. Crit Rev Neurosurg 9:252–261, 1999PubMedCrossRefGoogle Scholar
  91. 90.
    Oi S, Matusmoto S: Morphological findings of postshunt slit-ventricle in experimental canine hydrocephalus: aspects of causative factor for isolated ventricles and slit ventricle syndrome. Child’s Nerv Syst 2:179–184, 1986CrossRefGoogle Scholar
  92. 91.
    Oi S, Sato O, Matsumoto S: Neurological and medico-social problems of spina bifida patients in adolescence and adulthood. Child’s Nerv Syst 12:181–187, 1996CrossRefGoogle Scholar
  93. 92.
    Oka K, Yamamoto M, Ikeda K, et al: Flexible endoneuro-surgical therapy for aqueductal stenosis. Neurosurgery 33:236–243, 1993PubMedCrossRefGoogle Scholar
  94. 93.
    Pedersen KK, Haase J: Isotope liquorgraphy in the demonstration of communicating obstructive hydrocephalus after severe cranial trauma. Acta Neurol Scand 49:10–30, 1973PubMedCrossRefGoogle Scholar
  95. 94.
    Platt LD, DeVore GR: Modification of fetal intraventricular amniotic shunt. Am J Gynecol 152:1044–1045, 1985Google Scholar
  96. 95.
    Pretorius DH, Davis K, Manco-Johnson ML, et al: Clinical course of fetal hydrocephalus: 40 cases. AJR Am J Roentgenol 144:827–831, 1985PubMedGoogle Scholar
  97. 96.
    Pudenz RH, Russell FE, Hund AH: Ventriculoauriculostomy. A technique for shunting cerebrospinal fluid into the rigid auricle. Preliminary report. J Neurosurg 14:171–179, 1957PubMedCrossRefGoogle Scholar
  98. 97.
    Putnam TJ: Treatment of hydrocephalus by endoscopic coagulation of the choroids plexus. Description of a new instrument and preliminary report of results. N Engl J Med 210:1373–1376, 1934CrossRefGoogle Scholar
  99. 98.
    Rabe EF, Flynn RE, Dodge PR: Subdural collections of fluid in infants and children. A study of 62 patients with special reference to factors influencing prognosis and the efficacy of various forms of therapy. Neurology 18:559–570, 1968PubMedCrossRefGoogle Scholar
  100. 99.
    Raimondi AJ, Bailey OT, McLone DG, et al: The pathophysiology and morphology of murine hydrocephalus in hydrocephalus 3 and Ch mutants. Surg Neurol 1:50–55, 1973PubMedGoogle Scholar
  101. 100.
    Raimondi AJ, Clark SJ, McLone DG: Pathogenesis of aqueductal occlusion in congenital murine hydrocephalus. J Neurosurg 45:66–77, 1976PubMedCrossRefGoogle Scholar
  102. 101.
    Robertson WC Jr, Gomez MR: External hydrocephalus. Arch Neurol 35:541–544, 1978PubMedCrossRefGoogle Scholar
  103. 102.
    Robertson WC Jr, Chun RWM, Orrison WW, et al: Benign subdural collections of infancy. J Pediat 94:382–385, 1979PubMedCrossRefGoogle Scholar
  104. 103.
    Sahar A: Pseudohydrocephalus-megalocephaly, increased intracranial pressure and widened subarachnoid space. Neuropädiatrie 9:130–131, 1978CrossRefGoogle Scholar
  105. 104.
    Sasaki S, Goto H, Nagano H, et al: Congenital hydrocephalus revealed in the inbred rat. LEW/Jms. Neurosurgery 13:548–554, 1983CrossRefGoogle Scholar
  106. 105.
    Sato K, Naomi N, Akira S, et al: Experimental production of myeloschisis, Chiari malformation type II, posterior fossa hydrocephalus and other malformations related to craniospianl dysraphism in rat fetuses by single intragastric administration of ethylenethiourea. Child’s Nerv Syst 1:1–6, 1985CrossRefGoogle Scholar
  107. 106.
    Saunders RL, Simmons GM, Edwards WH, et al: A cranial nail for fetal shunting. Child’s Nerv Syst 1:185–187, 1985CrossRefGoogle Scholar
  108. 107.
    Scarff JE: Third ventriculoscopy as the rational treatment of obstructive hydrocephalus (abstract). J Pediatr 6:870–871, 1935Google Scholar
  109. 108.
    Scarff JE: The treatment of nonobstructive (communicating) hydrocephalus by endoscopic cauterization of the choid plexuses. J Neurosurg 33:1–18, 1970PubMedCrossRefGoogle Scholar
  110. 109.
    Shinoda M, Hidaka M, Lindqvist E, et al: NGF, NT-3 and Trk C mRNAs, but not TrkA mRNA, are upregulated in the paraventricular structures in experimental hydrocephalus. Child’s Nerv Syst 17:704–712, 2001CrossRefGoogle Scholar
  111. 110.
    Smith MHD, Dormont RF, Prather GW: Subdural effusions complicating bacterial meningitis. Pediatrics 7:34–43, 1951PubMedGoogle Scholar
  112. 111.
    Takagi T, Hashimoto N, Togari H, et al: [Holoprosen-cephaly with Dandy-Walker cyst diagnosed in utero by MRI: report of a case]. No To Hattatsu 20:237–241 1988 (Jpn)PubMedGoogle Scholar
  113. 112.
    Takahashi Y, Tsutsumi H, Hashi K: Two cases of vein of Galen aneurysm in neonates: cinical problems and its treatment. Shoni No Noshinkei 15:253–260, 1990Google Scholar
  114. 113.
    Thickman D, Mintz M, Mennuti M, et al: MR imaging of cerebral abnormalities in utero. J Comput Assist Tomogr 8:1058–1061, 1984PubMedCrossRefGoogle Scholar
  115. 114.
    Till K: Subdural haematoma and effusion in infancy. Br Med J 3:400–402, 1968PubMedCrossRefGoogle Scholar
  116. 115.
    Tsubokawa T, Nakasuma S, Sato K: Effect of temporary subdural-peritoneal shunt on subdural effusion with subarachnoid effusion. Child’s Brain 11:47–59, 1984PubMedGoogle Scholar
  117. 116.
    Turner L: The structure of arachnoid granulations with observation of their physiological and pathological significance. Ann R Coll Surg 29:237–264, 1961Google Scholar
  118. 117.
    Vries JK: An endoscopic technique for third ventriculostomy. Surg Neurol 9:165–168, 1978PubMedGoogle Scholar
  119. 118.
    Walker MK, Carey L, Blockmeyer DL: The neuronaviga-tional 1.2-mm neuroview neuroendoscope. Neurosurgery 36:617–618, 1995PubMedCrossRefGoogle Scholar
  120. 119.
    Whittle IR, Johnston I, Sesser M: Intracranial pressure changes in arrested hydrocephalus. J Neurosurg 62:77–82, 1985PubMedCrossRefGoogle Scholar
  121. 120.
    Wieser HG, Probst C: Clinical observations on hydrocephalus with special regard to the posttraumatic malresorptive form. J Neurol 212:1–21, 1976PubMedCrossRefGoogle Scholar
  122. 121.
    Yamada H, Oi S, Tamaki N, et al: Prenatal aqueductal stenosis as a cause of congenital hydrocephalus in the inbred rat. LEW/Jms. Child’s Nerv Syst 8:394–398, 1992CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2005

Authors and Affiliations

  • Shizuo Oi
    • 1
  1. 1.Department of Neurosurgery, Division of Pediatric NeurosurgeryJikei University School of MedicineTokyoJapan

Personalised recommendations