Pathophysiology of Hydrocephalus

  • Márcia C. da Silva


Hydrocephalus is a pathological entity that has been known since Hippocrates and Galen [33]. It is one of the most common disorders treated by neurosurgeons. The overall incidence and prevalence of the disease can be difficult to estimate, as it can occur as an isolated entity or in association with other neurological disorders. Congenital hydrocephalus is present in 3 of 1000 live births [97]. Aside from the congenital etiology, hydrocephalus can result from a series of neurological conditions such as head trauma, intracranial hemorrhage, tumor, or infection of the central nervous system at any time during life.


Cereb Blood Flow Periventricular White Matter Cerebral Blood Vessel Local Cerebral Blood Flow Congenital Hydrocephalus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson B: Relief of akinetic mutism from obstructive hydrocephalus using bromocriptine and ephedrine. J Neurosurg 76:152–155, 1992PubMedCrossRefGoogle Scholar
  2. 2.
    Ball MJ, Vis CL: Relationship of granulovacuolar degeneration in hippocampal neurones to aging and to dementia in normal pressure hydrocephalus. Can J Neurol Sci 3:815–824, 1978Google Scholar
  3. 3.
    Behar KL, Rothman DL, Hossmann KA: NMR spectroscopy investigation of the recovery of energy and acid-base homeostasis in the cat brain after prolonged ischemia. J Cereb Blood Flow Metab 9:655–665, 1989PubMedCrossRefGoogle Scholar
  4. 4.
    Boesch C, Gruetter R, Martin E, et al: Variations in the in vivo P31 MR spectra of the developing human brain during postnatal life. Radiology 172:197–199, 1989PubMedGoogle Scholar
  5. 5.
    Boillat CA, Jones HC, Kaiser GL, et al: Ultrastrucutral changes in the deep cortical pyramidal cells of infant rats with inherited hydrocephalus and the effect of shunt treatment. Exp Neurol 147:377–388, 1997PubMedCrossRefGoogle Scholar
  6. 6.
    Bradley WG, Whittemore AR, Watanabe AS, et al: Association of deep white matter infarction with chronic communicating hydrocephalus: implications regarding the possible origin of normal-pressure hydrocephalus. AJNR 12:31–39, 1991PubMedGoogle Scholar
  7. 7.
    Bruni JE, Del Bigio MR, Clattenburg RE: Ependyma: normal and pathological. A review of the literature. Brain Res Rev 9:1–19, 1985CrossRefGoogle Scholar
  8. 8.
    Cady EB, Dawson MJ, Hope PL, et al: Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet 1:1059–1062, 1983PubMedCrossRefGoogle Scholar
  9. 9.
    Caner H, Peker S, Ozcan OE: Effects of hydrocephalus on the sympathetic nerves of cerebral arteries, investigated with WGA-HRP anterograde tracing in the rat. Acta Neu-rochir (Wien) 111:143–146, 1991CrossRefGoogle Scholar
  10. 10.
    Castejon OJ: Transmission electron microscope study of human hydrocephalic cerebral cortex. J Submicrosc Pathol 26:29–39, 1994Google Scholar
  11. 11.
    Castejon OJ, Diaz M, Valero C: Ultrastructural alterations of Golgi apparatus in the nerve cells of cerebral cortex in human hydrocephalus. a qualitative study using cortical biopsies. Scanning Microsc 8:89–96, 1994PubMedGoogle Scholar
  12. 12.
    Castro-Gago M, Rodriguez-Segade S, Camina F, et al: Indicators of hypoxia in cerebrospinal fluid of hydrocephalic children with suspected shunt malfunction. Child’s Nerv Syst 9:275–277, 1993CrossRefGoogle Scholar
  13. 13.
    Chopp M, Helpern JA, Ewing JR, et al: Anoxia followed by hyperoxia: in vivo 31P NMR of the cat brain. Magn Reson Imaging 2:329–333, 1984PubMedCrossRefGoogle Scholar
  14. 14.
    Chumas PD, Drake JM, Del Bigio MR, et al: Anaerobic glycolysis preceding white-matter destruction in experimental neonatal hydrocephalus. J Neurosurg 80:491–501, 1994PubMedCrossRefGoogle Scholar
  15. 15.
    Clarke DD, Lajtha AL, Maker H: Intermediary metabolism. In: Siegel GJ, Agranoff BW, Albers RW, Molinoff PB (eds) Basic neurochemistry. Molecular, cellular and medical aspects. Raven Press, New York pp 541–564, 1989Google Scholar
  16. 16.
    Collins P, Goulding DA: Subependymal cells provide a faster response to ependymal injury than astrocytes in the hydrocephalic brain. Neuropathol Appl Neurobiol 18:387–394, 1992PubMedCrossRefGoogle Scholar
  17. 17.
    Curran T, Lang AE: Parkinsonian syndromes associated with hydrocephalus: case reports, a review of the literature and pathophysiological hypothesis. Mov Disord 9:508–520, 1994PubMedCrossRefGoogle Scholar
  18. 18.
    Da Silva MC, Drake JM, Lemaire C, et al: High energy phosphate metabolism in a neonatal model of hydro cephalus before and after shunting. J Neurosurg 81:544–553, 1994PubMedCrossRefGoogle Scholar
  19. 19.
    Da Silva MC, Michowicz S, Drake JM, et al: Reduced local cerebral blood flow in periventricular white matter in experimental neonatal hydrocephalus-restoration with CSF shunting. J Cereb Blood Flow Metab 15:1057–1065, 1995PubMedCrossRefGoogle Scholar
  20. 20.
    Del Bigio MR, Bruni JE, Fewer HD: Human neonatal hydrocephalus. An electron microscopic study of the periventricular tissue. J Neurosurg 63:56–63, 1985PubMedCrossRefGoogle Scholar
  21. 21.
    Del Bigio, MR Bruni JE: Cerebral water content in silicone oil-induced hydrocephalic rabbits. Pediat Neurosci 13:72–77, 1987CrossRefGoogle Scholar
  22. 22.
    Del Bigio MR, Bruni JE: Periventricular pathology in hydrocephalic rabbits before and after hunting. Acta Neuropathol 77:186–195, 1988PubMedGoogle Scholar
  23. 23.
    Del Bigio MR, Bruni JE: Changes in periventricular aviculture of rabbit brain following induction of hydrocephalus and after shunting. J Neurosurg 69:115–120, 1988PubMedCrossRefGoogle Scholar
  24. 24.
    Del Bigio MR: Hydrocephalus-induced changes in the composition of cerebrospinal fluid. Neurosurgery 25:416–423, 1989PubMedCrossRefGoogle Scholar
  25. 25.
    Del Bigio MR, Bruni JE: Silicone oil-induced hydrocephalus in the rabbit. Child’s Nerv Syst 7:79–84, 1991CrossRefGoogle Scholar
  26. 26.
    Del Bigio MR: Neuropath logical changes caused by hydrocephalus. Acta Neuropathol 85:573–585, 1993PubMedCrossRefGoogle Scholar
  27. 27.
    Del Bigio MR, da Silva MC, Drake JM, et al: Acute and chronic cerebral white matter damage in neonatal hydrocephalus. Can J Neurol Sci 21:299–305, 1994PubMedGoogle Scholar
  28. 28.
    Del Bigio MR, Kanfer JN, Zhang YW: Myelination delay in the cerebral white matter of immature rats with kaolin-induced hydrocephalus is reversible. J Neuropathol Exp Neurol 56:1053–1066, 1997PubMedCrossRefGoogle Scholar
  29. 29.
    Delivoria-Papadopoulos M, DiGiacomo JE: 31P nuclear magnetic resonance spectroscopy in the human neonatal brain. Semin Perinatal 14:248–257, 1990Google Scholar
  30. 30.
    Dennis M, Fitz CR, Netley CT, et al: The intelligence of hydrocephalic children. Arch Neurol 38:607–615, 1981PubMedCrossRefGoogle Scholar
  31. 31.
    Dennis M, Jacennik B, Barnes MA: The content of narrative discourse in children and adolescent after early onset hydrocephalus and in normally developing age peers. Brain Lang 46:129–165, 1994PubMedCrossRefGoogle Scholar
  32. 32.
    Deo-Narine V, Gomez DG, Vullo T, et al: Direct in vivo observation of transventricular absorption in the hydrocephalic dog using magnetic resonance imaging. Invest Radiol 29:287–293, 1994PubMedCrossRefGoogle Scholar
  33. 33.
    Di Rocco C: The treatment of infantile hydrocephalus. CRC Press Inc, Boca Raton, 1987Google Scholar
  34. 34.
    Drake JM, Potts DG, Lemaire C: Magnetic resonance imaging of silastic-induced canine hydrocephalus. Surg Neurol 31:28–40, 1989PubMedCrossRefGoogle Scholar
  35. 35.
    Edwards MSB, Harison MR, Halks-Miller M, et al: Kaolin-induced congenital hydrocephalus in utero fetal lamb and rhesus monkeys. J Neurosurg 60:11–122, 1984Google Scholar
  36. 36.
    Ehara K, Matsumoto S, Yoshida N, et al: Ascending norephinephrine pathways impaired in experimental hydrocephalus. Japan J Pharmacol 32:205–208, 1982CrossRefGoogle Scholar
  37. 37.
    Ellef SM, Schanll MD, Ligetti L, et al: Concurrent measurements of cerebral flow, sodium, lactate and high energy phosphate metabolism using 19F, 23Na, 1H and 31P nuclear magnetic resonance spectroscopy. Magn Reson Med 7:412–424, 1988CrossRefGoogle Scholar
  38. 38.
    Erencinska M, Silver IA: ATP and brain function. J Cereb Blood Flow Metab 9:219, 1989CrossRefGoogle Scholar
  39. 39.
    Fan KJ, Pezeshkpour G: Neurofibrillary tangles in association with congenital hydrocephalus. J Natl Med Assoc 79:1001–1003, 1987PubMedGoogle Scholar
  40. 40.
    Flynn CJ, Faroqui AA, Horrocks LA: Ischemia and hypoxia. In: Siegel GJ, Agranoff BW, Albers RW, Molinoff PB (eds). Basic neurochemistry. Molecular, cellular and medical aspects. Raven Press, New York pp 783–795, 1989Google Scholar
  41. 41.
    Galbreath E, Kim SJ, Brenner M, et al: Overexpression of TGF-beta 1 in the central nervous system of transgenic mice results in hydrocephalus. J Neuropathol Exp Neurol 54:339–349, 1995PubMedCrossRefGoogle Scholar
  42. 42.
    Gideon P, Thomsen F, Sorensen PS, et al: Increased self-diffusion of brain water in hydrocephalus measured by MR imaging. Acta Radiol 35:514–519, 1994PubMedGoogle Scholar
  43. 43.
    Girard J: Gluconeogenesis in late fetal and early neonatal life. Biol Neonate 50:237258, 1986Google Scholar
  44. 44.
    Glees P, Voth D: Clinical and ultrastructural observations of maturing human frontal cortex. Part I (biopsy material hydrocephalic infants). Neurosurg Rev 11:273–278, 1988PubMedCrossRefGoogle Scholar
  45. 45.
    Glees P, Hasan M, Voth D, et al: Fine structural features of the cerebral micro vasculature in hydrocephalic human infants: correlated clinical observations. Neurosurg Rev 12:315–321, 1989PubMedCrossRefGoogle Scholar
  46. 46.
    Glees P, Hasan M: Ultrastructure of human cerebral macroglia and microglia maturing and hydrocephalic frontal cortex. Neurosurg Rev 13:231–242, 1990PubMedCrossRefGoogle Scholar
  47. 47.
    Glees P, Voth D, Schwarz M: Ultrastructural observations on transendothelial transport from extracellular neuronal spaces towards the vascular lamina of cerebral capillaries of hydrocephalic human biopsies. Eur J Pediatr Surg 2,Suppl 1:43, 1992PubMedGoogle Scholar
  48. 48.
    Goh D, Minns RA, Pye SD, et al: Cerebral blood flow velocity changes after ventricular taps and ventriculoperi-toneal shunting. Child’s Nerv Syst 7:452–457, 1991CrossRefGoogle Scholar
  49. 49.
    Gould RM: Myelination development. In: Wiggins RC, Candless OW, Enna JJ (eds). Developmental neurochemistry. University of Texas Press, Austin pp 47–99, 1985Google Scholar
  50. 50.
    Gylai L, Schnall M, Mclaughlin AC, et al: Simultaneous 31P and 1H nuclear magnetic resonance studies of hypoxia and ischemia in the cat brain. J Cereb Blood Flow Metab 7:543–551, 1987CrossRefGoogle Scholar
  51. 51.
    Hale P, McAllister JP, Katz SD, et al: Improvement of cortical morphology in infantile hydrocephalic animals after ventriculoperitoneal shunt placement. Neurosurgery 31:1085–1096, 1992PubMedCrossRefGoogle Scholar
  52. 52.
    Hamilton PA, Hope P, Reynolds OR: Magnetic resonance spectroscopy. In: Levine MI, Benete MJ, Punt J (eds) Fetal and neonatal neurology and neurosurgery. Churchill Livingstone, 1988Google Scholar
  53. 53.
    Harris NG, Jones HC, Williams SCR: MR imaging for measurements of ventricles and cerebral cortex in postnatal rats (H-Tx strain) with progressive inherited hydrocephalus. Exp Neurol 118:1–6, 1992PubMedCrossRefGoogle Scholar
  54. 54.
    Harris NG, Jones HC, McAllister JP: 1H NMR spectroscopy of cerebral cortex in hydrocephalic H-Tx rats with and without shunt treatment. Eur J Pediatr Surg 5, supply (Abstract), 1995Google Scholar
  55. 55.
    Harris NG, McAllister JP, Counaughty JM, et al: The effect of inherited hydrocephalus and shunt treatment on the cortical pyramidal cell dendrites in the infant H-Tx rat. Exp Neurol 141:269–279, 1996PubMedCrossRefGoogle Scholar
  56. 56.
    Hidaka M, Matsumae M, Yamamura M, et al: Glucose metabolism and protective biochemical mechanisms in a rat brain affected by kaolin-induced hydrocephalus. Child’s Nerv Syst 13:183–188, 1997CrossRefGoogle Scholar
  57. 57.
    Hasan M, Glees P: Ultrastructural features of the human frontal cortex neurons of maturing and hydrocephalic cerebrum. Arch Ital Anat Embriol 95:17–26, 1990PubMedGoogle Scholar
  58. 58.
    Hassin GB: Hydrocephalus studies of the pathology and pathogenesis with remarks on the cerebrospinal fluid. Arch Neurol Psychiatry 24:1164–1186, 1932CrossRefGoogle Scholar
  59. 59.
    Hawkins D, Bowers TM, Bannister CM, et al: The functional outcome of shunting H-Tx rat pups at different ages. Eur J Pediatr Surg 7(suppl 1): 31–34, 1997PubMedCrossRefGoogle Scholar
  60. 60.
    Higashi K, Asahisa H, Ueda N, et al: Cerebral blood flow and metabolism in experìmental hydrocephalus. Neurol Res 8:169–176; 1986, 1986PubMedGoogle Scholar
  61. 61.
    Hirsch JF: Consensus: long-term outcome in hydrocephalus. Child’s Nerv Syst 10:64–69, 1994CrossRefGoogle Scholar
  62. 62.
    Hochwald GM, Epstein F, Malhan C, et al: The relationship of compensated to decompensated hydrocephalus in the cat. J Neurosurg 39: 694–697, 1973PubMedCrossRefGoogle Scholar
  63. 63.
    Holtzman D, McFarland EW, Jacobs D, et al: Maturational increase in mouse brain creatine kinase reaction rates shown by phosphorus magnetic resonance. Dev Brain Res 58:181–188, 1991CrossRefGoogle Scholar
  64. 64.
    Hope PL, Cady EB, Tofts PS, et al: Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth-asphyxiated infants. Lancet 2:366–370, 1984PubMedCrossRefGoogle Scholar
  65. 65.
    Houkin K, Kwee IL, Nakada T: Persistent high lactate level as a sensitive MR spectroscopy indicator of Complete infarction. J Neurosurg 72:763–766, 1990PubMedCrossRefGoogle Scholar
  66. 66.
    Hovda DA, Chugani HT, Villablanca JR, et al: Maturation of cerebral oxidative metabolism in the cat: a cytochrome oxidase histochemistry study. J Cereb Blood Flow Metab 12:1039–1048, 1992PubMedCrossRefGoogle Scholar
  67. 67.
    Iacopino DG, Zaccone C, Molina D, et al: Intraoperative monitoring of cerebral blood flow during ventricular shunting in hydrocephalic pediatric patients. Child’s Nerv Syst 11: 483–486, 1995CrossRefGoogle Scholar
  68. 68.
    Inagawa T, Ishikawa S, Uozumi T: Homovanillic acid and 5-hydroxyindoleacetic acid in the ventricular CSF of comatose patients with obstructive hydrocephalus. J Neurosurg 52:635–641, 1980PubMedCrossRefGoogle Scholar
  69. 69.
    Jones CT: The biochemical development of the fetus and neonate. Elsevier Biomedical Press, New York, 1982Google Scholar
  70. 70.
    Jones HC, Dack S, Ellis C: Morphological aspects of the development of hydrocephalus in a mouse mutant (SUMS/NP). Acta Neuropathol 72:268–276, 1987PubMedCrossRefGoogle Scholar
  71. 71.
    Jones HC, Bucknall RM, Harris NG: The cerebral cortex in congenital hydrocephalus in the H-Tx rat: a quantitative light microscopy study. Acta Neuropathol 82:217–224, 1991PubMedCrossRefGoogle Scholar
  72. 72.
    Jones HC, Richards HK, Bucknall RM, et al: Local cerebral blood flow in rats with congenital hydrocephalus. J Cereb Blood Flow Metab 13:531–534, 1993PubMedCrossRefGoogle Scholar
  73. 73.
    Jones HC, Harris NG, Rocca JR, et al: Progressive tissue injury in infantile hydrocephalus and prevention/reversal with shunt treatment. Neurol Res 22:89–96, 2000PubMedGoogle Scholar
  74. 74.
    Kaiser GL, Wenger P, Jost A: Clinical, radiological and neurochemical follow-up in normal, hydrocephalic and hydrocephalic shunted rats of the H-Tx strain. Eur J Pediatric Surg 5,suppl: 42–43 (Abstract), 1995Google Scholar
  75. 75.
    Knuckey NW, Preston J, Palm D, et al: Hydrocephalus decreases chloride efflux from the choroid plexus epithelium. Brain Res 618:313–317, 1993PubMedCrossRefGoogle Scholar
  76. 76.
    Kobayashi H, Hayashi M, Kawano H, et al: Phosphorus-31 magnetic resonance spectroscopy of cerebral ischemìa in cats. Neurosurgery 27:240–246, 1990PubMedCrossRefGoogle Scholar
  77. 77.
    Komatsumoto S, Nioka S, Yoshizaki K, et al: Cerebral energy metabolism measured in vivo by 31P NMR in middle cerebral artery occlusion in the cat-relation to severity of stroke. J Cereb Blood Flow Metab 7:557–562, 1987PubMedCrossRefGoogle Scholar
  78. 78.
    Kovnar EH, Coxe WS, Volpe JJ: Normal neurologic development and marked reconstitution of cerebral mantle after postnatal treatment of intrauterine hydrocephalus. Neurology 34:840–841, 1984PubMedCrossRefGoogle Scholar
  79. 79.
    Kriebel RM, Shah AB, McAllister JP: The microstructure of cortical neuropil before and after decompression in experimental infantile hydrocephalus. Exp Neurol 119:89–98, 1993PubMedCrossRefGoogle Scholar
  80. 80.
    Kriebel RM, McAllister JP: Pathology of the hippocampus in experimental feline infantile hydrocephalus. Neurol Res 22:29–36, 2000PubMedGoogle Scholar
  81. 81.
    Kudo T, Tada K, Takeda M, et al: Learning impairment and microtubule associated protein 2 decrease in gerbils under chronic cerebral hypoperfusion. Stroke 21:1205–1209, 1990PubMedCrossRefGoogle Scholar
  82. 82.
    Laptook AR, Hassan A, Peterson J, et al: Effects of repeated ischemia in cerebral blood flow and brain energy metabolism. NMR Biomed 1:74–79, 1988PubMedCrossRefGoogle Scholar
  83. 83.
    Laptook AR, Corbett RJ, Uauy R, et al: Use of 31P magnetic resonance spectroscopy to characterize evolving brain damage after perinatal asphyxia. Neurology 39:709–712, 1989PubMedCrossRefGoogle Scholar
  84. 84.
    Lawson B, Anday E, Guillet R, et al: Brain oxidative phosphorylation following alteration in head position in preterm and term neonates. Pediatr Res 22:302–305, 1987PubMedCrossRefGoogle Scholar
  85. 85.
    Longatti PL, Canova G, Guida F, et al: The CSF myelin basic protein: A reliable marker of actual cerebral damage in hydrocephalus. J Neurosurg Sci 37:87–90, 1993PubMedGoogle Scholar
  86. 86.
    Longatti PL, Guida F, Agostini S, et al: The CSF myelin basic protein in pediatric hydrocephalus. Child’s Nerv Syst 10:96–98, 1994CrossRefGoogle Scholar
  87. 87.
    Lumenta CB, Skotarczak U: Long-term follow-up in 233 patients with congenital hydrocephalus. Child’s Nerv Syst 11:173–175, 1995CrossRefGoogle Scholar
  88. 88.
    Lux WE, Hochwald GM, Sahar A et al: Periventricular water content. Arch Neurol 23:475–479, 1970PubMedCrossRefGoogle Scholar
  89. 89.
    Malm J, Kristensen B, Ekstedt J, et al: CSF monoamines metabolites, cholinesterases and lactate in the adult hydrocephalus syndrome (normal pressure hydrocephalus) related to CSF hydrodynamic parameters. J Neurol Neurosurg Psychiatry 54:252–259, 1991PubMedCrossRefGoogle Scholar
  90. 90.
    Mangano FT, McAllister JP, Jones HC, et al (1998): The microglial response to progressive hydrocephalus in a model of inherited aqueductal stenosis. Neurol Res 20:697–704, 1998PubMedGoogle Scholar
  91. 91.
    Manos P, Bryan GK, Edmond J: Creatine kinase activity in postnatal rat brain development and in cultured neurons, astrocytes and oligodendrocytes. J Neurochem 56:2101–2107, 1991PubMedCrossRefGoogle Scholar
  92. 92.
    Massicotte EM, Buist R, Del Bigio MR: Altered diffusion and perfusion in hydrocephalic rat brain: a magnetic resonance imaging analysis. J Neurosurg 92:442–447, 2000PubMedCrossRefGoogle Scholar
  93. 93.
    Matsumae M, Lorenzo AV, Black P: Measurements of intracranial compartment volumes in ventriculomegalic patients and volunteers assessed by MRI. Eur J Pediatr Surg 2,suppl 1:34, 1992PubMedGoogle Scholar
  94. 94.
    McAllister JP, Maugans TA, Shah MV, et al: Neuronal effects of experimentally induced hydrocephalus in newborn rats. J Neurosurg 63:776–783, 1985PubMedCrossRefGoogle Scholar
  95. 95.
    McAllister JP, Cohen MI, O’Mara KA, et al: Progression of experimental infantile hydrocephalus and effects of ven-triculoperitoneal shunts: an analysis correlating magnetic resonance imaging with gross morphology. Neurosurgery 29:329–340, 1991PubMedCrossRefGoogle Scholar
  96. 96.
    Mies G, Ishimaru S, Xie Y, et al: Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab 11:753–761, 1991PubMedCrossRefGoogle Scholar
  97. 97.
    Milhorat TH: Hydrocephalus historical notes, etiology and clinical diagnosis. In: Section of Pediatric Neurosurgery of the American Association of Neurological Surgeons (ed) Pediatric neurosurgery. Surgery of the developing nervous system. Grune & Stratton, New York pp 197–210, 1982Google Scholar
  98. 98.
    Minamikawa J, Kikuchi H, Ishikawa M, et al: High energy phosphate metabolism in congenital hydrocephalic rats. An in vivo 31P magnetic resonance spectroscopy study. In: Matsumoto S, Tamaki N (eds) Hydrocephalus: pathogenesis and treatment. Springer-Verlag, New York pp 121–130, 1991Google Scholar
  99. 99.
    Miwa S, Inagaki C, Fujiwara M, et al: The activities of noradrenergic and dopaminergic neuron systems in experimental hydrocephalus. J Neurosurg 57:67–73, 1982PubMedCrossRefGoogle Scholar
  100. 100.
    Miyake H, Eghwrudjakpor PO, Sakamoto T, et al: Catecholamine alterations in experimental hydrocephalus. Child’s Nerv Syst 8:243–246, 1992CrossRefGoogle Scholar
  101. 101.
    Miyazawa T, Wada M, Sato K: A quantitative Golgi study of cortical pyramidal neurons in congenitally hydrocephalic rats-HTX. Child’s Nerv Syst 3:263–270, 1988Google Scholar
  102. 102.
    Miyazawa T, Sato K: Impairment of synaptogenesis and learning disability in HTX-rats with arrested shunt-dependent hydrocephalus. Child’s Nerv Syst 7:121–128, 1991CrossRefGoogle Scholar
  103. 103.
    Miyazawa T, Nishiye H, Sato K, et al: Cortical synaptogenesis in congenitally hydrocephalic HTX-rats using monoclonal anti-synaptic vesicle protein antibody. Brain Dev 14:75–79, 1992PubMedCrossRefGoogle Scholar
  104. 104.
    Morell P, Quarles RH, Norton WT: Formation, structure and biochemistry of myelin. In: Siegel GJ, Agranoff BW, Albers RW, Molinoff PB (eds) Basic neurochemistry. Molecular, cellular, and medical aspects. Raven Press, New York pp 109–136, 1989Google Scholar
  105. 105.
    Mori K, Miyake H, Kurisaka M, et al: Immunohistochem-ical localisation of superoxide dismutase in congenital hydrocephalic rat brain. Child’s Nerv Syst 9:136–141, 1993CrossRefGoogle Scholar
  106. 106.
    Nakada J, Oka N, Endo S, et al: Changes in the cerebral vascular bed in experimental hydrocephalus: an angio-architectural and histological study. Acta Neurochir (Wien) 114:43–50, 1992CrossRefGoogle Scholar
  107. 107.
    Nakada T, Kwee IL, Suzuki N, et al: Intrauterine fetal brain NMR spectroscopy: 1H and 31P studies in rats. Magn Reson Med 12:172–180, 1989PubMedCrossRefGoogle Scholar
  108. 108.
    Nehlig A, de Vasconcelos AP, Boyet S: Postnatal changes in local cerebral blood flow measured by the quantitative autoradiography [14C] iodoantipyrine technique in freely moving rats. J Cereb Blood Flow Metab 9:579–588, 1989PubMedCrossRefGoogle Scholar
  109. 109.
    Norwood WI, Ingwall JS, Norwood CR, et al: Developmental changes of creatine kinase metabolism in rat brain. Am J Physiol 244:205–210, 1983Google Scholar
  110. 110.
    O’Shea KS, Rheinheimer JST, D’Amato CJ et al: Alterations in the neuroepithelial basal lamina in a neurological mutant with prenatal hydrocephalus. J Neuropathol Exp Neurol 47:507–515, 1988PubMedCrossRefGoogle Scholar
  111. 111.
    Oi S, Ijichi A, Matsumoto S: Immunohistochemical evaluation of neuronal maturation in untreated fetal hydrocephalus. Neurol Med Chir (Tokyo) 29:989–994, 1989CrossRefGoogle Scholar
  112. 112.
    Pettegrew JW, Panchalingan K, Withers G, et al Changes in brain energy and phospholipid metabolism during development and aging in the Fischer 344 rat. J Neuropathol Exp — Neurol 49:237–249, 1990PubMedCrossRefGoogle Scholar
  113. 113.
    Pettegrew JW, Kopp SJ, Munshew NJ, et al: 31P nuclear magnetic resonance studies of phosphoglyceride metabolism in developing and degenerative brain: preliminary observations. J Neuropathol Exp Neurol 46:419–430, 1987PubMedCrossRefGoogle Scholar
  114. 114.
    Pople IK: Doppler flow velocities in children with controlled hydrocephalus: referenze values for diagnosis of blocked cerebrospinal fluid shunts. Child’s Nerv Syst 8:124–125, 1992CrossRefGoogle Scholar
  115. 115.
    Raimondi AJ: A unifying theory for the definition and classification of hydrocephalus. Child’s Nerv Syst 10:2–12, 1994CrossRefGoogle Scholar
  116. 116.
    Richards HK, Pickard JD, Punt J: Local cerebral glucose utilization in experimental chronic hydrocephalus in the rat. Z Kinderchir 59:606–611 (Abstract), 1985Google Scholar
  117. 117.
    Richards HK, Buchknall RM, Jones JC, et al: The uptake of [14C] deoxyglucose into brain of young rats with inherited hydrocephalus. Exp Neurol 103:194–198, 1989PubMedCrossRefGoogle Scholar
  118. 118.
    Riva D, Milani N, Giorgi C, et al: Intelligence outcome in children with shunted hydrocephalus of different etiology. Child’s Nerv Syst 10:70–73, 1994CrossRefGoogle Scholar
  119. 119.
    Roricht S, Meyer BU, Woiciechowsky C, et al: Callosal and corticospinal tract function in patients with hydrocephalus: a morphometric and transcranial magnetic stimulation study. J Neurol 245:280–288, 1998PubMedCrossRefGoogle Scholar
  120. 120.
    Rowlatt U: The microscopic effects of ventricular dilatation without increase in head size. J Neurosurg. 48:957–961, 1978PubMedCrossRefGoogle Scholar
  121. 121.
    Rubin RC, Hochwald G, Liwnicz B, et al: The effect of severe hydrocephalus on size and number of brain cells. Dev Med Child Neurol 14:117–120, 1972CrossRefGoogle Scholar
  122. 122.
    Rubin RC, Hochwald GM, Tiell M, et al: Hydrocephalus: I. histological and ultrastructural changes in the pre-shunted cortical mantle. Surg Neurol 5:109–114, 1976PubMedGoogle Scholar
  123. 123.
    Rubin RC, Hochwald GM, Tiell M, et al: Hydrocephalus: II. cell number and size, and myelin content of the pre-shunt-ed cerebral cortical mantle. Surg Neurol 5:115–118, 1976PubMedGoogle Scholar
  124. 124.
    Rubin RC, Hochwald GM, Tiell M, et al: Hydrocephalus: III. reconstitution of the cerebral cortical mantle following ventricular shunting. Surg Neurol 5:179–183, 1976PubMedGoogle Scholar
  125. 125.
    Sada Y, Moriki T, Yamane T, et al: Immunohistochemical study on blood-brain barrier in congenitally hydrocephalic HTX rat brain. Zentralbl Pathol 140:289–298, 1994PubMedGoogle Scholar
  126. 126.
    Schmidt H, Siems WG, Grune T, et al: Concentration of purine compounds in the cerebrospinal fluid of infants suffering from sepsis, convulsions and hydrocephalus. J Perinat Med 23:167–174, 1995PubMedCrossRefGoogle Scholar
  127. 127.
    Shirane R, Sato S, Sato K, et al: Cerebral blood flow and oxygen metabolism in infants with hydrocephalus. Child’s Nerv Syst 8:118–123, 1992CrossRefGoogle Scholar
  128. 128.
    Shoesmith CL, Buist R, Del Bigio MR: Magnetic resonance imaging study of extracellular fluid tracer movement in brains of immature rats with hydrocephalus. Neurol Res 22:111–116, 2000PubMedGoogle Scholar
  129. 129.
    Siesjo BK: Cerebral circulation and metabolism. J Neurosurg 60:883–908, 1984PubMedCrossRefGoogle Scholar
  130. 130.
    Siesjo BK: Mechanisms of ischemic brain damage. Crit Care Med 16:954–963, 1988PubMedCrossRefGoogle Scholar
  131. 131.
    Sokoloff L: Circulation and energy metabolism of the brain. In: Siegel GJ, Agranoff BW, Albers RW, Mohnoff PB (eds) Basic neurochemistry. Molecular, cellular and medical aspects. Raven Press, New York pp 565–590, 1989Google Scholar
  132. 132.
    Suda K, Sato K, Miyazawa T, et al: Changes of synapse-related proteins (SVP-38 and drebrins) during development of brain in congenitally hydrocephalic HTX rats with and without early placement of ventriculoperi-toneal shunt. Pediatr Neurosurg 20:50–56, 1994PubMedCrossRefGoogle Scholar
  133. 133.
    Suda K, Sato K, Takeda N, et al: Early ventriculoperi-toneal shunt-effects on learning ability and synaptogenesis of the brain in congenitally hydrocephalic HTX rats. Child’s Nerv Syst 10:19–23, 1994CrossRefGoogle Scholar
  134. 134.
    Sun GY, Foudin LL: Phospholipid composition and metabolism in the developing and aging nervous system. In: Eichberg J (ed) Phospholipids in nervous tissues. John Wiley & Sons, New York pp 79–134, 1985Google Scholar
  135. 135.
    Sutton LN, Wood JH, Brooks BR, et al Cerebrospinal fluid myelin basic protein in hydrocephalus. J Neurosurg 59:467–470, 1983PubMedCrossRefGoogle Scholar
  136. 136.
    Sutton LN, McLaughlin AC, Kemp W, et al: Effects of increased ICP on brain phosphocreatine and lactate by simultaneous 1H and 31P NMR spectroscopy. J Neurosurg 67:381–386, 1987PubMedCrossRefGoogle Scholar
  137. 137.
    Suzuki F, Handa J, Maeda T: Effects of congenital hydrocephalus on serotonergic input and barrel cytoarchitecture in the developing somatosensory cortex of rats. Child’s Nerv Syst 8:18–24, 1992CrossRefGoogle Scholar
  138. 138.
    Tada T, Kanaji M, Kobayashi S: Induction of communicating hydrocephalus in mice by intrathecal injection of human recombinant transforming growth factor-beta 1. J Neuroimmunol 50:153–158, 1994PubMedCrossRefGoogle Scholar
  139. 139.
    Takano T, Mekata Y, Yamano T, et al: Early ependymal changes in experimental hydrocephalus after mumps virus inoculation in hamsters. Acta Neuropathol 85:521–525, 1993PubMedCrossRefGoogle Scholar
  140. 140.
    Tamaki N, Yasuda M, Matsumoto S, et al: Cerebral energy metabolism in experimental hydrocephalus. Child’s Nerv Syst 6:172–178, 1990CrossRefGoogle Scholar
  141. 141.
    Tashiro Y, Drake JM, Chakrabortty S, et al: Functional injury of cholinergic, GABAergic and dopaminergic systems in the basal ganglia of adult rat with kaolin-induced hydrocephalus. Brain Res 770:45–52, 1997PubMedCrossRefGoogle Scholar
  142. 142.
    Tashiro Y, Drake JM: Reversibility of functionally injured neurotransmitter system with shunt placement in hydrocephalic rats: implications for intellectual impairment in hydrocephalus. J Neurosurg 88:709–717, 1998PubMedCrossRefGoogle Scholar
  143. 143.
    Tofts P, Wray S: Changes in brain phosphorus metabolites during the post-natal development of the rat. J Physiol 359:417–429, 1985PubMedGoogle Scholar
  144. 144.
    Tsutsumi K, Niwa M, Himeno A, et al: Alpha-natriuretic peptide binding sites in the rat choroid plexus are increased in the presence of hydrocephalus. Neurosci Lett 87:93–98, 1988PubMedCrossRefGoogle Scholar
  145. 145.
    Valk J, van der Knaap MS: Magnetic resonance of myelin, myelination and myelin disorders. Springer-Verlag, Berlin, 1989Google Scholar
  146. 146.
    van der Knaap MS, van der Grond J, van Rijin PC, et al: Agedependent changes in localized proton and phosphorus MR spectroscopy of the brain. Radiology 176:509–515, 1990PubMedGoogle Scholar
  147. 147.
    Wehby-Grant MC, Olmstead CE, Peacock WJ, et al: Metabolic responses of the neonatal rabbit brain to hydrocephalus and shunting. Pediatr Neurosurg 24:79–91, 1996PubMedCrossRefGoogle Scholar
  148. 148.
    Wiggins RC, McCandlers DW, Enna JJ: Developmental Neurochemistry. University of Texas Press, Austin, 1985Google Scholar
  149. 149.
    Williamson EC, Pearson HE, McAllister JP: Gliosis and ganglion cell death in the developing cat retina during hydrocephalus and after decompression. Dev Brain Res 70:47–52, 1992CrossRefGoogle Scholar
  150. 150.
    Wright LC, McAllister JP, Katz SD, et al: Cytological and cy to architectural changes in the feline cerebral cortex during experimental infantile hydrocephalus. Pediatr Neurosurg 16:139–155, 1990PubMedCrossRefGoogle Scholar
  151. 151.
    Yamada H, Yokota A, Furuta A, et al: Reconstitution of shunted mantle in experimental hydrocephalus. J Neurosurg. 76:856–862, 1992PubMedCrossRefGoogle Scholar
  152. 152.
    Young RSK, Cowan BE, Petroff OAC, et al: In vivo 31P and in vitro lH nuclear magnetic resonance study of hypoglycemia during neonatal seizure. Ann Neurol 22:622–628, 1987PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2005

Authors and Affiliations

  • Márcia C. da Silva
    • 1
  1. 1.Department of Neurosurgery, Hospital Infantil São Camilo, Belo Horizonte and Department of Neurosurgery, Escola Paulista de MedicinaFederal University of São PauloBrazil

Personalised recommendations