Skip to main content

Cerebrospinal Fluid Dynamics

  • Chapter
Pediatric Hydrocephalus

Abstract

Historically, the saga of cerebrospinal fluid (CSF) dynamics almost always starts with the Monro-Kellie doctrine. This states that the sum of volumes of brain, blood and CSF (although in the time of Kellie, i.e. the early nineteenth century, the volume of CSF was not considered) must be constant due to the fixed volume of the skull and spinal canal. This may be expressed mathematically as:

$$Volumeofbrain + volumeofblood + + volumeofCSF = const$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albeck MJ, Borgesen SE, Gjerris F, et al: Intracranial pressure and cerebrospinal fluid outflow conductance in healthy subjects. J Neurosurg 74:597–600, 1991

    Article  PubMed  CAS  Google Scholar 

  2. Albeck MJ, Skak C, Nielsen PR, et al: Age dependency of resistance to cerebrospinal fluid outflow. J Neurosurg 89:275–278, 1998

    Article  PubMed  CAS  Google Scholar 

  3. Andreasen N, Minthon L, Clarberg A, et al: Sensitivity, specificity, and stability of CSF-tau in AD in community-based patient sample. Neurology 53:1488–1494, 1999

    Article  PubMed  CAS  Google Scholar 

  4. Aschoff A, Kremer P, Benesch C, et al: Overdrainage and shunt technology. Child’s Nerv Syst 11:193–202, 1995

    Article  CAS  Google Scholar 

  5. Avezaat CJJ, Eijndhoven JHM: Cerebrospinal fluid pulse pressure and craniospinal dynamics. A theoretical, clinical and experimental study (thesis). Jongbloed A, The Hague. 1984

    Google Scholar 

  6. Avezaat CJJ, van Eijndhoven JHM, Wyper DJ: Cerebrospinal pulse-pressure and intracranial volume-pressure relationships. J Neurol Neurosurg Psychiatry 42:687–700, 1979

    Article  PubMed  CAS  Google Scholar 

  7. Boon AJ, Tans JT, Delwel EJ, et al: Dutch normal-pressure hydrocephalus study: prediction of outcome after shunting by resistance to outflow of cerebrospinal fluid. J Neurosurg 87:687–693, 1997

    Article  PubMed  CAS  Google Scholar 

  8. Boon AJ, Tans JT, Delwel EJ, et al: Dutch Normal-Pressure Hydrocephalus Study: the role of cerebrovascular disease. J Neurosurg 90:221–226, 1999

    Article  PubMed  CAS  Google Scholar 

  9. Borgesen SE, Albeck MJ, Gjerris F, et al: Computerized infusion test compared to steady pressure constant infusion test in measurement of resistance to CSF outflow. Acta Neurochir 119:12–16 1992

    Article  CAS  Google Scholar 

  10. Borgesen SE, Gjerris F: The predictive value of conductance to outflow of CSF in normal pressure hydrocephalus. Brain 105:65–86, 1982

    Article  PubMed  CAS  Google Scholar 

  11. Borgesen SE, Gjerris F, Sorensen SC: The resistance to cerebrospinal fluid absorption in humans. A method of evaluation by lumbo-ventricular perfusion, with particular reference to normal pressure hydrocephalus. Acta Neurol Scand 57: 88–96, 1978

    Article  PubMed  CAS  Google Scholar 

  12. Bradley WG Jr; Whittemore AR; Kortman KE; et al: Marked cerebrospinal fluid void: indicator of successful shunt in patients with suspected normal-pressure hydrocephalus. Radiology 178:459–466, 1991

    PubMed  Google Scholar 

  13. Chapman PH, Cosman ER, Arnold MA: The relationship between ventricular fluid pressure and body position in normal subjects and subjects with shunts: a telemetric study. Neurosurgery 26:181–189 1990

    Article  PubMed  CAS  Google Scholar 

  14. Chopp M, Portnoy HD: System analysis of intracranial pressure. Comparison of volume-pressure test and CSF-pulse amplitude analysis. J Neurosurg 53:516–527, 1980

    Article  PubMed  CAS  Google Scholar 

  15. Costabile G, Probst C: Intrathecal infusion test and decrease in shunt revisions and infections. Neurochirurgia Stuttg 31:134–135, 1988

    PubMed  CAS  Google Scholar 

  16. Czosnyka M, Batorski L, Roszkowski M, et al: Cerebrospinal compensation in hydrocephalic children. Child’s Nerv Syst 9:17–22, 1993

    Article  CAS  Google Scholar 

  17. Czosnyka M, Batorski L, Laniewski P, et al: A computer system for the identification of the cerebrospinal compensatory model. Acta Neurochir (Wien) 105:112–116, 1990

    Article  CAS  Google Scholar 

  18. Czosnyka M, Piechnik S, Richards HK, et al: Contribution of mathematical modelling to the bedside tests of cerebrovascular autoregulation. J Neurol Neurosurg Psychiatry 63:721–731, 1997

    Article  PubMed  CAS  Google Scholar 

  19. Czosnyka M, Richards HK, Czosnyka Z, et al: Vascular components of cerebrospinal fluid compensation. J Neurosurg 90:752–759, 1999

    Article  PubMed  CAS  Google Scholar 

  20. Czosnyka M, Whitehouse H, Smielewski P, et al: Testing of cerebrospinal compensatory reserve in shunted and non-shunted patients: a guide to interpretation based on observational study. J Neurol Neurosurg Psychiatry 60: 549–558, 1996

    Article  PubMed  CAS  Google Scholar 

  21. Czosnyka ZH, Czosnyka M, Whitfield PC, et al: Cerebral autoregulation among patients with symptoms of hydrocephalus. Neurosurgery 50:526–532, 2002

    PubMed  Google Scholar 

  22. Czosnyka Z, Czosnyka M, Richards HK, et al: Posture-related overdrainage: comparison of the performance of 10 hydrocephalus shunts in vitro. Neurosurgery 42: 327–333, 1998

    Article  PubMed  CAS  Google Scholar 

  23. Da Silva MC, Michowicz S, Drake JM, et al: Reduced local cerebral blood flow in periventricular white matter in experimental neonatal hydrocephalus — restoration with CSF shunting. J Cerebr Blood Flow Metab 15: 1057–1065, 1995

    Article  Google Scholar 

  24. Dandy WE: Extripation of the choroid plexus of the lateral ventricles in a communicating hydrocephalus of the lateral ventricle in communicating hydrocephalus. Ann Surg 68:569–579, 1918

    Article  PubMed  CAS  Google Scholar 

  25. Davson H: Formation and drainage of the CSF in hydrocephalus. In: Shapiro K, Marmarou A, Portnoy H (eds) Hydrocephalus. Raven Press, New York, pp 112–160, 1984

    Google Scholar 

  26. Davson H, Welch K, Segal MB: The physiology and pathophysiology of cerebrospinal fluid. Churchill Livingstone, New York, 1987

    Google Scholar 

  27. Ekstedt J: CSF hydrodynamic studies in man. Normal hy-drodynamic variables related to CSF pressure and flow. J Neurolog Neurosurg Psychiatry 41:345–353, 1978

    Article  CAS  Google Scholar 

  28. Ekstedt J: CSF hydrodynamic studies in man. Method of constant pressure CSF infusion. J Neurol Neurosurg Psychiatry 40:105–119, 1977

    Article  PubMed  CAS  Google Scholar 

  29. Epstein F; Lapras C; Wisoff JH: ’slit-ventricle syndrome’: etiology and treatment. Pediatr Neurosci 14:5–10, 1988

    Article  PubMed  CAS  Google Scholar 

  30. Foltz EL, Blanks JP, Yonemura K: CSF pulsatility in hydrocephalus: respiratory effect on pulse wave slope as an indicator of intracranial compliance. Neurol Res 12: 67–74, 1990

    PubMed  CAS  Google Scholar 

  31. Foltz El, Blanks JP: Symptomatic low intracranial pressure in shunted hydrocephalus. J Neurosurg 68: 401–408, 1988

    Article  PubMed  CAS  Google Scholar 

  32. Frieden H, Eksted J: Estimation of CSF outflow resistance: Model validation and resistance calculation by the method of CSF volume accounting. In: Gjerris F, Borgesen SE, Sorensen PS (eds) Outflow of cerebrospinal fluid. Munksgaard, Copenhagen, p 198–210, 1989

    Google Scholar 

  33. Frieden H, Ekstedt J: Instrumentation for cerebrospinal fluid hydrodynamic studies in man. Med Biol Eng Cornput 20:167–180, 1982

    Article  Google Scholar 

  34. Gideon P, Thomsen C, Stahlberg F, et al: Cerebrospinal fluid production and dynamics in normal aging: a MRI phase-mapping study. Acta Neurol Scand 89:362–366, 1994

    Article  PubMed  CAS  Google Scholar 

  35. Gjerris F, Borgesen SE: Patophysiology of CSF circulation. In: Crockard A, Hayward A, Hoff JT (eds) Neurosurgery. The scientific basis of clinical practice. Blackwell Scientific Publications, pp 146–174, 1992

    Google Scholar 

  36. Gjerris F, Borgesen SE, Sorensen PS, et al: Resistance to cerebrospinal fluid outflow and intracranial pressure in patients with hydrocephalus after subarachnoid haemorrhage. Acta Neurochir (Wien) 88(3–4): 79–86, 1987

    Article  CAS  Google Scholar 

  37. Graff J, Radford NR, Rezai K, et al: Regional cerebral blood flow in normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 50:1589–1596, 1987

    Article  Google Scholar 

  38. Hakim S, Adams RD: The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci 2:307–327, 1965

    Article  PubMed  CAS  Google Scholar 

  39. Hara K, Nakatani S: Detection of the B waves in the oscillation of intracranial pressure by fast Fourier transform. Med Inf Lond 15:125–331, 1990

    Article  PubMed  CAS  Google Scholar 

  40. Hartman A, Alberti E: Cerebral blood flow and cerebral blood volume in communicating hydrocephalus. Arch Psychiatr Nernekr 225:291–306, 1978

    Article  Google Scholar 

  41. Hatashita S, Hoff JT: Biomechanics of brain edema in acute cerebral ischemia in cats. Stroke 19:91–97, 1988

    Article  PubMed  CAS  Google Scholar 

  42. Heiss JD, Patronas N, DeVroom HL, et al: Elucidating the pathophysiology of syringomyelia. J Neurosurg 91: 553–562, 1999

    Article  PubMed  CAS  Google Scholar 

  43. Higashi K, Asahisa H, Ueda N, et al: Cerebral blood flow and metabolism in experimental hydrocephalus. Neurol Res 8:169–176, 1986

    PubMed  CAS  Google Scholar 

  44. Hoffmann O: CSF dynamics: Integration of Pulsatory Components and Autoregulation into Mathematical Model. In: Ishii S, Nagai H, Brock M (eds) Intracranial pressure V. Springer, Berlin Heidelberg, pp 169–173, 1983

    Chapter  Google Scholar 

  45. James AE Jr, Novak G, Bahr AL, et al: The production of cerebrospinal fluid in experimental communicating hydrocephalus. Exp Brain Res 27:553–557, 1977

    Article  PubMed  Google Scholar 

  46. Jurkiewicz J, Czernicki Z, Berdyga J, et al: Three-phase infusion test. G Neurol Neurochir Pol 28:363–369, 1994

    CAS  Google Scholar 

  47. Kasprowicz M, Czosnyka Z, Momjian S, et al: Hysteresis of cerebrospinal pressure-volume curve among patients with hydrocephalus. Neurosurgery 2002 (in submission).

    Google Scholar 

  48. Katzman R, Hussey F: A simple constant infusion mano-metric test for measurement of CSF absorption. Neurology (Minneap), 20:534–544, 1970

    Article  CAS  Google Scholar 

  49. Klinge P, Fischer J, Brinker T, et al: PET and CBF studies of chronic hydrocephalus: a contribution to surgical indication and prognosis. J Neuroimag 8:205–209, 1998

    CAS  Google Scholar 

  50. Klinge PM, Berding G, Brinker T, et al: A positron emission tomography study of cerebrovascular reserve before and after shunt surgery in patients with idipathic chronic hydrocephalus. J Neurosurg 91:605–609, 1999

    Article  PubMed  CAS  Google Scholar 

  51. Kosteljanetz M, Nehen AM, Kaalund J: Cerebrospinal fluid outflow resistance measurements in the selection of patients for shunt surgery in the normal pressure hydrocephalus syndrome. A controlled trial. Acta Neurochir (Wien) 104(1–2): 48–53, 1990

    Article  CAS  Google Scholar 

  52. Kristensen B, Malm J, Fagerlund M, et al: Regional cerebral blood flow, white matter abnormalities, and cerebrospinal fluid hydrodynamics in patients with idiopathic adult hydrocephalus syndrome. J Neurol Neurosurg Psychiatry 60:282–288, 1996

    Article  PubMed  CAS  Google Scholar 

  53. Larsson A, Moonen M, Bergh AC, et al: Predictive value of quantitative cisternography in normal pressure hydrocephalus. Acta Neurol Scand 81:327–332, 1990

    Article  PubMed  CAS  Google Scholar 

  54. Lee EJ, Hung YC, Chang CH, et al: Cerebral blood flow velocity and vasomotor reactivity before and after shunting surgery in patients with normal pressure hydrocephalus. Acta Neurochir (Wien) 140:599–604, 1998

    Article  CAS  Google Scholar 

  55. Lemaire JJ, Chazal J, Gutknecht JL, et al: Effects of acute compliance fluctuation on slow ICP waves: frequential aspects. In: Nagai H, Kamiya K, Ishii S (eds) Intracranial pressure IX. Springer, Berlin Heidelberg New York, pp 498–501, 1994

    Google Scholar 

  56. Maksymowicz W, Czosnyka M, Koszewski W, et al.: The role of cerebrospinal system compensatory parameters in estimation of functioning of implanted shunt system in patients with communicating hydrocephalus. Acta Neurochir 101:112–116, 1989

    Article  CAS  Google Scholar 

  57. Malm J, Kristensen B, Karlsson T, et al: The predictive value of cerebrospinal fluid dynamic tests in patients with th idiopathic adult hydrocephalus syndrome. J Arch Neurol 52:783–789, 1995

    Article  CAS  Google Scholar 

  58. Mamo HL, Meric PC, Ponsin JC, et al: Cerebral blood flow in normal pressure hydrocephalus. Stroke 18:1074–1080, 1987

    Article  PubMed  CAS  Google Scholar 

  59. Marmarou A: A theoretical model and experimental evaluation of the cerebrospinal fluid system. Thesis, Drexel University, Philadelphia, PA, 1973

    Google Scholar 

  60. Marmarou A, Foda MA, Bandoh K, et al: Posttraumatic ventriculomegaly: hydrocephalus or atrophy? A new approach for diagnosis using CSF dynamics. J Neurosurg 85:1026–1035, 1996

    Article  PubMed  CAS  Google Scholar 

  61. Marmarou A, Maset AL, Ward JD, et al: Contribution of CSF and vascular factors to elevation of ICP in severely head injured patients. J Neurosurg 66:883–890, 1987

    Article  PubMed  CAS  Google Scholar 

  62. Marmarou A, Shulman K, Rosende RM: A non-linear analysis of CSF system and intracranial pressure dynamics. J Neurosurg 48:332–344, 1978

    Article  PubMed  CAS  Google Scholar 

  63. Momjian S, Czosnyka M, Czosnyka Z, et al: Correlation between the resistance to cerebrospinal fluid outflow and vasogenic waves of intracranial pressure in hydrocephalus. Brit J Neurosurg 2004 (in press)

    Google Scholar 

  64. May C, Kaye JA, Atack JR, et al: Cerebrospinal fluid production is reduced in healthy aging. Neurology 40(3 Pt 1): 500–503, 1990

    Article  PubMed  CAS  Google Scholar 

  65. McComb: Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg 59:369–383, 1983

    Article  PubMed  CAS  Google Scholar 

  66. McComb JG, Davson H, Hyman S, et al: Cerebrospinal fluid drainage as influenced by ventricular pressure in the rabbit. J Neurosurg 56:790–797, 1982

    Article  PubMed  CAS  Google Scholar 

  67. Meyer JS, Tachibana H, Hardenberg JP, et al: Normal pressure hydrocephalus. Influence on cerebral hemodynamics and cerebrospinal fluid pressure-chemical autoregulation. Surg Neurol 21:195–203, 1984

    Article  PubMed  CAS  Google Scholar 

  68. Milhorat TH: Failure of choroid plexectomy as treatment for hydrocephalus. Surg Gynecol Obstet 139:505–508, 1974

    PubMed  CAS  Google Scholar 

  69. Owler BK, Harris NG, Pena A, et al: Global and regional CBF changes in patients with normal pressure hydrocephalus with changes in ICP. J Cereb Blood Flow Metab 21(Suppl 1):S419, 2001

    Google Scholar 

  70. Owler BK, Pickard JD: Normal pressure hydrocephalus and cerebral blood flow: a review. Acta Neurol Scand 104: 325–342, 2001

    Article  PubMed  CAS  Google Scholar 

  71. Pappenheimer JR, Heisey SR, Jordan EF, et al: Perfusion of the cerebral ventricular system in unanaesthetized goats. Am J Physiol 203:763–774, 1962

    Google Scholar 

  72. Pickard JD, Teasdale G, Matheson M, et al: Intraventricular pressure waves — the best predictive test for shunting in normal pressure hydrocephalus. In: Shulman K, Marmarou A, Miller JD et al (eds) Intracranial pressure IV. Springer, Berlin Heidelberg New York, pp 498–500, 1980

    Chapter  Google Scholar 

  73. Portnoy HD, Chopp M, Branch C, et al: Cerebrospinal fluid pulse waveform as an indicator of cerebral autoregulation. J Neurosurg 56: 666–678, 1982

    Article  PubMed  CAS  Google Scholar 

  74. Pudenz RH, Foltz EL: Hydrocephalus: overdrainage by ventricular shunts. A review and recommendations. Surg Neurol 35:200–212, 1991

    Article  PubMed  CAS  Google Scholar 

  75. Raabe A, Czosnyka M, Piper I, et al: Monitoring of intracranial compliance: correction for a change in body position. Acta Neurochir (Wien) 141:31–36, 1999

    Article  CAS  Google Scholar 

  76. Rekate HL, Brodkey JA, Chizeck HJ, et al: Ventricular volume regulation: a mathematical model and computer simulation. Pediatr Neurosci 14:77–84, 1988

    Article  PubMed  CAS  Google Scholar 

  77. Rubenstein E: Relationship of senescence of cerebrospinal fluid circulatory system to dementias of the aged. Lancet 351:283–285, 1998

    Article  PubMed  CAS  Google Scholar 

  78. Schettini A, Walsh EK: Brain tissue elastic behavior and experimental brain compression. Am J Physiol 255: R799–R805, 1988

    PubMed  CAS  Google Scholar 

  79. Schettini A, Walsh EK: CSF dynamics and cerebral hemodynamics in ATP-induced hypotension. In: Avezaat CJ, Ei-jndhoven JHM, Maas AIR, Tans JTJ (eds) Intracranial pressure VIII. Springer, Berlin Heidelberg New York, pp 738–743, 1993

    Chapter  Google Scholar 

  80. Schmidt JF, Fedders O, Borgesen SE, et al: Reproducibility of measurements of resistance to CSF outflow. In: Gjerris F, Borgesen SE, Sorensen PS (eds) Outflow of cerebrospinal fluid. Copenhagen, Munksgaard, pp 224–232, 1989

    Google Scholar 

  81. Shapiro K, Fried A, Takei F, et al: Effect of the skull and dura on neural axis pressure-volume relationships and CSF hydrodynamics. J Neurosurg 63:76–81, 1985

    Article  PubMed  CAS  Google Scholar 

  82. Sklar FH, Beyer CW, Ramanathan M et al: Servo-controlled lumbar infusions: a clinical tool for determination of CSF dynamics as a function of pressure. Neurosurgery 3:170–178, 1978

    Article  PubMed  CAS  Google Scholar 

  83. Sklar FH, Giller C, Shapiro K: Manometric determination of CSF absorption: variance cosiderations. In: Gjerris F, Borgesen SE, Sorensen PS (eds) Outflow of cerebrospinal fluid. Copenhagen, Munksgaard, pp 249–255, 1989

    Google Scholar 

  84. Sliwka S: A clinical system for the evaluation of selected dynamic properties of the intracranial system. PhD Thesis, Polish Academy of Sciences, Warsaw, 1980

    Google Scholar 

  85. Sorek S, Bear J: Models of Cerebral System Mechanics. Scientific Report No. 2, Technion — Israel Institute of Technology, Haifa 1986

    Google Scholar 

  86. Sorenson PS, Gjerris F, Schmidt J: Resistance to CSF outflow in benign intracranial hypertension (pseudotumor cerebri). In: Gjerris F, Borgesen SE, Sorensen PS (eds) Outflow of cerebrospinal fluid. Copenhagen, Munskgaard, pp 343–355, 1989

    Google Scholar 

  87. Sprung C, Collman H, Fuchs EC, et al: Pre-and postoperative evaluation of hydrocephalus using the infusion test. Adv Neurosurg 4:463–470, 1977

    Google Scholar 

  88. Stochetti N, Rossi S, Cacerelli P, et al: The pattern of ICP after bolus injection as an indicator of intracranial disturbances. In: Nagai H, Kamiya K, Ishii S (eds) Intracranial pressure IX. Springer, Tokyo, pp 172–174, 1994

    Google Scholar 

  89. Tanaka A, Kimura M, Nakayama Y, et al: Cerebral blood flow and autoregulation in normal pressure hydrocephalus. Neurosurgery 40:1161–1165, 1997

    Article  PubMed  CAS  Google Scholar 

  90. Tans JT, Poortvliet DC: Relationship between compliance and resistance to outflow of CSF in adult hydrocephalus. J Neurosurg 71:59–62, 1989

    Article  PubMed  CAS  Google Scholar 

  91. Taylor R, Czosnyka Z, Czosnyka M, et al: A laboratory model of testing shunt performance after implantation. Br J Neurosurg 16:30–35, 2002

    Article  PubMed  CAS  Google Scholar 

  92. Tisell M, Edsbagge M, Stephensen H, et al: Elastance correlates with outcome after endoscopic third ventriculostomy in adults with hydrocephalus caused by primary aqueductal stenosis. Neurosurgery 50:70–76, 2002

    PubMed  Google Scholar 

  93. Ursino M, Di Giammarco P: A mathematical model of the relationship between cerebral blood volume and intracranial pressure changes: the generation of plateau waves. Ann Biomed Eng 19:15–25, 1991

    Article  PubMed  CAS  Google Scholar 

  94. Vorstrup S, Christensen J, Gjerris F, et al: Cerebral blood flow in patients with normal pressure hydrocephalus before and after shunting. J Neurosurg 66:379–387, 1987

    Article  PubMed  CAS  Google Scholar 

  95. Williams B: Progress in syringomyelia. Neurol Res 8:130–145, 1986

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Italia

About this chapter

Cite this chapter

Czosnyka, M., Czosnyka, Z.H., Whitfield, P.C., Pickard, J.D. (2005). Cerebrospinal Fluid Dynamics. In: Cinalli, G., Sainte-Rose, C., Maixner, W.J. (eds) Pediatric Hydrocephalus. Springer, Milano. https://doi.org/10.1007/978-88-470-2121-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2121-1_3

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2173-0

  • Online ISBN: 978-88-470-2121-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics