Advertisement

Shunt Hardware and Surgical Technique

  • Howard J. Ginsberg
  • James M. Drake
Chapter

Abstract

Hydrocephalus is one of the most common complications of virtually any insult to the neonatal, infant, or child’s nervous system. It occurs in approximately 1 in 2000 births, and is associated with approximately one-third of all congenital malformations of the nervous system [15]. It is also a common complication of intraventricular hemorrhage, brain tumors, infections, and head injury [4]. The etiology of hydrocephalus in 345 children undergoing a first shunt insertion in the randomized shunt design trial [31,32] has been analyzed in detail elsewhere [33]. The median corrected age of the patients was 55 days, indicating that this is very much a problem seen most commonly in infancy. An estimated 33 000 shunts are placed in patients of all ages annually in the United States, with an estimated shunt prevalence of more than 56 000 in children less than 18 years old [15].

Keywords

Burr Hole Shunt System Ventricular Catheter Shunt Revision Shunt Valve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aihara N, Takagi T, Hashimoto N, et al: Breakage of shunt devices (Sophy programmable pressure valve) following implantation in the hypochondriac region. Child’s Nerv Syst 13:636–638, 1997CrossRefGoogle Scholar
  2. 2.
    Albright AL, Haines SJ, Taylor FH: Function of parietal and frontal shunts in childhood hydrocephalus. J Neurosurg 69:883–886, 1988PubMedCrossRefGoogle Scholar
  3. 3.
    Andersson H, Logren J: Hydrodynamic evaluation of shunt performance in hydrocephalus. Dev Med Child Neurol Suppl 4:30–34, 1968Google Scholar
  4. 4.
    Aronyk KE: The history and classification of hydrocephalus. Neurosurg Clin North Am 4:599–609, 1993Google Scholar
  5. 5.
    Aschoff A: Overdrainage and shunt technology. A critical comparison of programmable, hydrostatic and variable-resistance valves and flow-reducing devices. Child’s Nerv Syst 11:193–202, 1995CrossRefGoogle Scholar
  6. 6.
    Aschoff A, Benesch C, Kremer P, et al: The solved and unsolved problems of hydrocephalus valves: A critical comment. Advances in Neurosurgery, vol 21. Springer, Berlin Heidelberg New York, pp 103–114, 1993Google Scholar
  7. 7.
    Aschoff A, Kramer P, Benesch C, et al: Shunt technology and overdrainage — a critical review of hydrostatic, programmable and variable-resistance valves and flow-reducing devices. Eur J Pediatr Surg 1 Suppl 1:49–50, 1995Google Scholar
  8. 8.
    Aschoff A, Benesch C, Kremer P, et al: Forty-four “programmable” valves in bench-test. Child’s Nerv Syst 12:503, 1996Google Scholar
  9. 9.
    Baskin JJ, Manwaring KH, Rekate HL: Ventricular shunt removal: the ultimate treatment of the slit ventricle syndrome. J Neurosurg 88:478–484, 1998PubMedCrossRefGoogle Scholar
  10. 10.
    Beach C, Manthey DE, et al: Tension hydrothorax due to ventriculopleural shunting. J Emerg Med 16:33–36, 1998PubMedCrossRefGoogle Scholar
  11. 11.
    Benesch C, Friese M, Aschoff A: Four year follow up study of 146 patients with programmable Medos Hakim valve shunt system. Child’s Nerv Syst 10:475, 1994Google Scholar
  12. 12.
    Belliard H, Roux FX, Turak B, et al: [The Codman Medos programmable shunt valve. Evaluation of 53 implantations in 50 patients]. Neurochirurgie 42:139–145, 1996PubMedGoogle Scholar
  13. 13.
    Bierbauer KS, Storrs BB, McLone DG, et al: A prospective, randomized study of shunt function and infections as a function of shunt placement. Pediatr Neurosurg 16:287–291, 1990CrossRefGoogle Scholar
  14. 14.
    Black PM, Hakim R, Bailey NO: The use of the Codman-Medos Programmable Hakim valve in the management of patients with hydrocephalus: illustrative cases. Neurosurg 34:1110–1113, 1994CrossRefGoogle Scholar
  15. 15.
    Bondurant CP, Jimenez DF: Epidemiology of cerebrospinal fluid shunting. Pediatr Neurosurg 23:254–258; discussion 259, 1995PubMedCrossRefGoogle Scholar
  16. 16.
    Brownlee RD, Dold ON, Myles ST: Intraventricular hemorrhage complicating ventricular catheter revision: incidence and effect on shunt survival. Pediatr Neurosurg 22:315–320, 1995PubMedCrossRefGoogle Scholar
  17. 17.
    Chambi I, Hendrick EB: A technique for removal of an adherent ventricular catheter. Pediatr Neurosci 14:216–217, 1988PubMedCrossRefGoogle Scholar
  18. 18.
    Chidiac A, Pelissou-Guyotat I, Sindou M: [Practical value of transcutaneous pressure adjustable valves (Sophy SU 8) in the treatment of hydrocephalus and arachnoid cysts in adults (75 cases)]. Neurochirurgie 38:291–296, 1992PubMedGoogle Scholar
  19. 19.
    Christens-Barry WA, Guarnieri M, Carson BS: Fiberoptic delivery of laser energy to remove occlusions from ventricular shunts: technical report. Neurosurgery 44:345–350, 1999PubMedCrossRefGoogle Scholar
  20. 20.
    Coker SB: Cyclic vomiting and the slit ventricle syndrome. Pediatr Neurol 3:297–299, 1987PubMedCrossRefGoogle Scholar
  21. 21.
    Collins P, Hockley AD, Woollam DHM: Surface ultrastructure of tissues occluding ventricular catheters. J Neurosurg 48:609–613, 1978PubMedCrossRefGoogle Scholar
  22. 22.
    Czosnyka M, Maksymowicz W, Batorski L: Comparison between classic-differential and automatic shunt functioning on the basis of infusion tests. Acta Neurochir (Wien) 106:1–8, 1990CrossRefGoogle Scholar
  23. 23.
    Czosnyka M, Czosnyka Z, Whitehouse H, Pickard JD: Hydrodynamic properties of hydrocephalus shunts: United Kingdom Shunt Evaluation Laboratory. J Neurol Neurosurg Psychiatry 62:43–50, 1997PubMedCrossRefGoogle Scholar
  24. 24.
    Dahlerup B, Gjerris F, Harmsen A: Severe headache as the only symptom of long-standing shunt dysfunction in hydrocephalic children with normal or slit ventricles revealed by computed tomography. Child’s Nerv Syst 1:49–52, 1985CrossRefGoogle Scholar
  25. 25.
    Davidoff LE: Treatment of hydrocephalus. Arch Surg 18:1737–1762, 1929CrossRefGoogle Scholar
  26. 26.
    Decq P, Blanquet A, Yepes C: Percutaneous jugular placement of ventriculoatrial shunts using a split sheath. Technical note. Acta Neurochir 136:92–4, 1995CrossRefGoogle Scholar
  27. 27.
    Di Rocco C: Is the slit ventricle syndrome always a slit ventricle syndrome? Child’s Nerv Syst 10:49–58, 1994CrossRefGoogle Scholar
  28. 28.
    Drake JM, Sainte-Rose C: The shunt book. Blackwell Scientific, New York, 1995Google Scholar
  29. 29.
    Drake JM, da Silva MC, Rutka JT: Functional obstruction of an antisiphon device by raised tissue capsule pressure. Neurosurgery 32:137–139, 1993PubMedCrossRefGoogle Scholar
  30. 30.
    Drake JM, Tenti G, Sivaloganathan S: Computer modeling of siphoning for CSF shunt design evaluation. Pediatr Neurosurg 21:6–15, 1994PubMedCrossRefGoogle Scholar
  31. 31.
    Drake JM, Kestle J: Rationale and methodology of the multicenter pediatric cerebrospinal fluid shunt design trial. Pediatric Hydrocephalus Treatment Evaluation Group. Child’s Nerv Syst 12:434–447, 1996CrossRefGoogle Scholar
  32. 32.
    Drake JM, Kestle J: Determining the best cerebrospinal fluid shunt valve design: the pediatric valve design trial. Neurosurgery 38:604–607, 1996PubMedGoogle Scholar
  33. 33.
    Drake JM, Kestle J, Milner R, et al: Randomized trial of cerebropsinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery 43:294–305, 1998PubMedCrossRefGoogle Scholar
  34. 34.
    Epstein F, Lapras C, Wisoff JH: ’slit-ventricle syndrome’: etiology and treatment. Pediatr Neurosci 14:5–10, 1988PubMedCrossRefGoogle Scholar
  35. 35.
    Foltz EL, Blanks J: Symptomatic low intracranial pressure in shunted hydrocephalus. J Neurosurg 68:401–408, 1988PubMedCrossRefGoogle Scholar
  36. 36.
    Fox JL, McCullough DC, Green RC: Effect of cerebrospinal fluid shunts on intracranial pressure and on cerebrospinal fluid dynamics. 2. A new technique of pressure measurements: results and concepts. 3. A concept of hydrocephalus. J Neurol Neurosurg Psychiatry 36:302–312, 1973PubMedCrossRefGoogle Scholar
  37. 37.
    Fox JL, Portnoy HD, Shulte RR: Cerebrospinal fluid shunts: an experimental evaluation of flow rates and pressure values in the anti-siphon valve. Surg Neurol 1:299–302, 1973PubMedGoogle Scholar
  38. 38.
    Fuse T, Takagi T, Fukushima T, et al: [Problems encountered with a programmable pressure valve (SOPHY) positioned in the chest wall]. No Shinkei Geka 24:41–5, 1996PubMedGoogle Scholar
  39. 39.
    Ginsberg HJ, Drake J, Cobbold RSC: Ventriculoperitoneal shunt flow dependency on the number of patent holes in a ventricular catheter. Pediatr Neurosurg 33:7–11, 2000PubMedCrossRefGoogle Scholar
  40. 40.
    Gruber R, Jenny P, Herzog B: Experiences with the anti-siphon device (ASD) in shunt therapy of pediatric hydrocephalus. J Neurosurg 61:156–162, 1984PubMedCrossRefGoogle Scholar
  41. 41.
    Guinane JE: An equivalent circuit analysis of cerebrospinal fluid hydrodynamics. Am J Physiol 223:425–430, 1972PubMedGoogle Scholar
  42. 42.
    Haase J, Weeth R: Multiflanged ventricular catheter for hydrocephalic shunts. Acta Neurochir (Wien) 33:213–218, 1976CrossRefGoogle Scholar
  43. 43.
    Hakim S: Flow through CSF shunts. J Neurosurg 39:127–128, 1973PubMedGoogle Scholar
  44. 44.
    Hakim S: Hydraulic and mechanical mis-matching of valve shunts in the treatment of hydrocephalus. The need for a servo-valve shunt. Dev Med Child Neurol 15:646–653, 1973PubMedCrossRefGoogle Scholar
  45. 45.
    Hakim S, Venegas JG, Burton JD: The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus: mechanical interpretation and mathematical model. Surg Neurol 5:187–210, 1976PubMedGoogle Scholar
  46. 46.
    Hakim S, Hakim C: A biomechanical model of hydrocephalus and its relationship to treatment. In: Shapiro K, Marmarou A, Portnoy HD (eds) Hydrocephalus. Raven, New York, 1984Google Scholar
  47. 47.
    Hoffman HJ: Technical problems in shunts. Monogr Neural Sci 8:158–169, 1982Google Scholar
  48. 48.
    Holness RO, Hoffman HJ, Hendrick EB: Subtemporal decompression for the slit-ventricle syndrome after shunting in hydrocephalic children. Child’s Brain 5:137–144, 1979PubMedGoogle Scholar
  49. 49.
    Hoppe-Hirsch E, Laroussinie F, Brunet L, et al: Late outcome of the surgical treatment of hydrocephalus. Child’s Nerv Syst 14:97–99, 1998CrossRefGoogle Scholar
  50. 50.
    Horgan MA, Piatt JH Jr: Shaving of the scalp may increase the rate of infection in CSF shunt surgery. Pediatr Neurosurg 26:180–184, 1997PubMedCrossRefGoogle Scholar
  51. 51.
    Hudgins RJ, Boydston WR: Shunt revision by coagulation with retention of the ventricular catheter. Pediatr Neurosurg 29:57–59, 1998PubMedCrossRefGoogle Scholar
  52. 52.
    Hyde-Rowan MD, Rekate H, Nulsen FE: Reexpansion of previously collapsed ventricles: the slit ventricle syndrome. J Neurosurg 56:536–539, 1982PubMedCrossRefGoogle Scholar
  53. 53.
    James HE, Nowak TP: Clinical course and diagnosis of migraine headaches in hydrocephalic children. Pediatr Neurosurg 17:310–316, 1991PubMedCrossRefGoogle Scholar
  54. 54.
    Kadowaki C, Hara M, Numoto M, et al: Factors affecting cerebrospinal fluid flow in a shunt. Br J Neurosurg 1:467–475, 1987PubMedCrossRefGoogle Scholar
  55. 55.
    Kadowaki C, Hara M, Numoto M, et al: CSF shunt physics: factors influencing shunt CSF flow. Child’s Nerv Syst 11:203–206, 1995CrossRefGoogle Scholar
  56. 56.
    Kaufman B, Weiss MH, Young HF, et al: Effects of prolonged cerebrospinal fluid shunting on the skull and brain. J Neurosurg 38:288–297, 1973PubMedCrossRefGoogle Scholar
  57. 57.
    Kausch W: Die Behandlung des Hydrocephalus der kleinen Kinder. Arch Klin Chir 87:709–796, 1908Google Scholar
  58. 58.
    Kellie G: An account... with some reflections on the pathology of the brain. Edin Med Chir Soc Trans 1:84–169, 1824Google Scholar
  59. 59.
    Kremer P, Aschoff A, Kunze S: Therapeutic risks of anti-siphon devices. Eur J Pediatr Surg 1Suppl 1:47–48, 1991PubMedGoogle Scholar
  60. 60.
    Lam CH, Villemure JG: Comparison between ventriculoatrial and ventriculoperitoneal shunting in the adult population. Br J Neurosurgery 11:43–48, 1997CrossRefGoogle Scholar
  61. 61.
    Langley JM, LeBlanc JC, Drake J, et al: Efficacy of antimicrobial prophylaxis in placement of cerebrospinal fluid shunts: meta-analysis. Clin Infect Dis 17:98–103, 1993PubMedCrossRefGoogle Scholar
  62. 62.
    Loop JE, Foltz EL: Craniostenosis and diploic lamination following operation for hydrocephalus. Acta Radiol [Diagn] 13:8–13, 1972Google Scholar
  63. 63.
    Lumenta CB, Roosen N, Dietrich U: Clinical experience with a pressure-adjustable valve SOPHY in the management of hydrocephalus. Child’s Nerv Syst 6:270–274, 1990CrossRefGoogle Scholar
  64. 64.
    Lundar T, Langmoen IA, Hovind KH: Fatal cardiopulmonary complications in children treated with ventriculoatrial shunts. Child’s Nerv Syst 7:215–217, 1991Google Scholar
  65. 65.
    Marmarou A, Shulman K, Rosende RM: A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J Neurosurg 48:332–344, 1978PubMedCrossRefGoogle Scholar
  66. 66.
    Martins AN: Resistance to drainage of cerebrospinal fluid: clinical measurement and significance. J Neuro 36:313–318, 1973Google Scholar
  67. 67.
    McCullough DC, Fox JL: Negative intracranial pressure hydrocephalus in adults with shunts and its relationship to the production of subdural hematoma. J Neurosurg 40:372–375, 1974PubMedCrossRefGoogle Scholar
  68. 68.
    McCullough DC: Symptomatic progressive ventriculomegaly in hydrocephalics with patent shunts and anti-siphon devices. Neurosurgery 19:617–621, 1986PubMedCrossRefGoogle Scholar
  69. 69.
    McGrail KM, Muzzi DA, Losasso TJ, et al: Ventriculoatrial shunt distal catheter placement using transesophageal echocardiography: technical note [see comments]. Neurosurgery 30:747–749, 1992PubMedCrossRefGoogle Scholar
  70. 70.
    Miyake H, Ohta T, Kajimoto Y, et al: A new ventriculoperitoneal shunt with a telemetric intracranial pressure sensor: clinical experience in 94 patients with hydrocephalus. Neurosurgery 40:931–935, 1997PubMedCrossRefGoogle Scholar
  71. 71.
    Munro A: Observations on the structure and functions of the nervous system. Edinburgh, 1783Google Scholar
  72. 72.
    Nagashima T, Tanaki N, Matsumoto S, et al: Biomechanics of hydrocephalus. Neurosurgery 21:898–904, 1987PubMedCrossRefGoogle Scholar
  73. 73.
    Nulsen FE, Spitz EB: Treatment of hydrocephalus by direct shunt from ventricle to jugular vein. Surg Forum 2:399–403, 1952Google Scholar
  74. 74.
    Ortler M, Kostron H, Felber S: Transcutaneous pressure-adjustable valves and magnetic resonance imaging: an ex vivo examination of the Codman-Medos programmable valve and the Sophy adjustable pressure valve. Neurosurgery 40:1050–1057, 1997PubMedCrossRefGoogle Scholar
  75. 75.
    Pattisapu JV, Trumble ER, Taylor KR, et al: Percutaneous endoscopic recanalization of catheter: a new technique of proximal shunt revision. Neurosurgery 45:1361–1366, 1999PubMedCrossRefGoogle Scholar
  76. 76.
    Pena A, Bolton MD, Whitehouse H, et al: Effects of brain ventricular shape on periventricular biomechanics: a finite-element analysis. Neurosurgery 45:107–116, 1999PubMedCrossRefGoogle Scholar
  77. 77.
    Piatt JH, Jr.: Pumping the shunt revisited. A longitudinal study. Pediatr Neurosurg 25:73–76, 1996PubMedCrossRefGoogle Scholar
  78. 78.
    Pollack IF, Albright AL, Adelson PD, et al: A randomized, controlled study of a programmable shunt valve versus a conventional valve for patients with hydrocephalus. Neurosurgery 45:1388–1408, 1999Google Scholar
  79. 79.
    Portnoy HD, Schulte RR, Fox JL, et al: Anti-siphon and reversible occlusion valves for shunting in hydrocephalus and preventing post-shunt subdural hematomas. J Neurosurg 38:729–738, 1973PubMedCrossRefGoogle Scholar
  80. 80.
    Portnoy HD, Tripp L, Croissant PD: Hydrodynamics of shunt valves. Child’s Brain 2:242–256, 1976PubMedGoogle Scholar
  81. 81.
    Portnoy HD, Croissant PD: A practical method for measuring hydrodynamics of cerebrospinal fluid. Surg Neurol 5:273–277, 1976PubMedGoogle Scholar
  82. 82.
    Portnoy HD: Hydrodynamics of shunts. Monogr Neural Sci 8:179–183, 1982Google Scholar
  83. 83.
    Portnoy HD, Amirjamshidi A, Hoffman HJ, et al: Shunts: which one, and why? Surg Neurol 49:8–13, 1998PubMedCrossRefGoogle Scholar
  84. 84.
    Post EM: Currently available shunt systems: a review. Neurosurgery 16:257–260, 1985PubMedCrossRefGoogle Scholar
  85. 85.
    Pudenz RH: The surgical treatment of hydrocephalus — an historical review. Surg Neurol 15:15–26, 1981PubMedCrossRefGoogle Scholar
  86. 86.
    Pudenz RH, Foltz EL: Hydrocephalus: overdrainage by ventricular shunts. A review and recommendations. Surg Neurol 35:200–212, 1991PubMedCrossRefGoogle Scholar
  87. 87.
    Rayport M, Reiss J: Hydrodynamic properties of certain shunt assemblies for the treatment of hydrocephalus. 1. Report of a case of communicating hydrocephalus with increased cerebrospinal fluid production treated by duplication of shunting device. 2. Pressure-flow characteristics of the Spitz-Holter, Pudenz-Heyer, and Cordis-Hakim shunt systems. J Neurosurg 30:455–467, 1969PubMedCrossRefGoogle Scholar
  88. 88.
    Reinprecht A, Dietrich W, Bertalanffy A, et al: The Medos Hakim programmable valve in the treatment of pediatric hydrocephalus. Child’s Nerv Syst 13:588–593, 1997CrossRefGoogle Scholar
  89. 89.
    Reinprecht A, Dietrich W, Bertalanffy A, et al: The Medos Hakim programmable valve in the treatment of pediatric hydrocephalus. Child’s Nervous System 13:588–593; discussion 593–594, 1997PubMedCrossRefGoogle Scholar
  90. 90.
    Sainte-Rose C, Hooven MD, Hirsch JF: A new approach to the treatment of hydrocephalus. J Neurosurg 66:213–226, 1987PubMedCrossRefGoogle Scholar
  91. 91.
    Sainte-Rose C, Hoffman HJ, Hirsch JF: Shunt failure. Concepts Pediatr Neurosurg 9:7–20, 1989Google Scholar
  92. 92.
    Sainte-Rose C, Piatt JH, Renier D, et al: Mechanical complications in shunts. Pediatr Neurosurg 17:2–9, 1991PubMedCrossRefGoogle Scholar
  93. 93.
    Sainte-Rose C: Shunt obstruction: a preventable complication? Pediatr Neurosurg 19:156–164, 1993PubMedCrossRefGoogle Scholar
  94. 94.
    Sanders DY, Summers R, DeRouen L: Symptomatic pleural collection of cerebrospinal fluid caused by a ventriculopleural shunt. South Med J 90:345–346, 1997PubMedCrossRefGoogle Scholar
  95. 95.
    Sgouros S, Malluci C, Walsh AR, et al: Long-term complications of hydrocephalus. Pediatr Neurosurg 23:127–132, 1995PubMedCrossRefGoogle Scholar
  96. 96.
    Shapiro K, Marmarou A, Shulman K: Characterization of clinical CSF dynamics and neural axis compliance using the pressure-volume index: I. The normal pressure-volume index. Ann Neurol 7:508–514, 1979CrossRefGoogle Scholar
  97. 97.
    Shapiro K, Marmarou A: Clinical applications of the pressure-volume index in treatment of pediatric head injuries. J Neurosurg 56:819–825, 1982PubMedCrossRefGoogle Scholar
  98. 98.
    Shapiro K, Fried A: The theoretical requirements of shunt design as determined by biomechanical testing in pediatric hydrocephalus. Child’s Nerv Syst 4:348–353, 1998CrossRefGoogle Scholar
  99. 99.
    Shulman K, Marmarou A: Pressure-volume considerations in infantile hydrocephalus. Dev Med Child Neurol 13(Suppl 25):90–95, 1971Google Scholar
  100. 100.
    Spertell RB: The response of brain to transient elevations in intraventricular pressure. J Neurol Sci 48:343–352, 1980PubMedCrossRefGoogle Scholar
  101. 101.
    Steinbok P, Cochrane DD: Shunt removal by choroid plexus coagulation [letter; comment]. J Neurosurg 85:981; discussion 982–983, 1996PubMedGoogle Scholar
  102. 102.
    Stellman-Ward GR, Bannister CM, Lewis MA, et al: The incidence of chronic headache in children with shunted hydrocephalus. Eur J Pediatr Surg 7:12–14, 1997PubMedCrossRefGoogle Scholar
  103. 103.
    Szczerbicki MR, Michalak M: Echocardiographic placement of cardiac tube in ventriculoatrial shunt. Technical note. J Neurosurg 85:723–4, 1996PubMedCrossRefGoogle Scholar
  104. 104.
    Tenti G, Sivaloganathan S, Drake J: Brain biomechanics: steady-state consolidation theory of hydrocephalus. Can Appl Mathem Q 94:243–266, 1998Google Scholar
  105. 105.
    Tokoro K, Chiba Y: Optimum position for an anti-siphon device in a cerebrospinal fluid shunt system. Neurosurgery 29:519–525, 1991PubMedCrossRefGoogle Scholar
  106. 106.
    Trost HA, Heissler HE, Claussen G, et al: Testing the hydrocephalus shunt valve: long-term bench test results of various new and explanted valves. The need for model for testing valves under physiological conditions. Eur J Pediatr Surg 1:38–40, 1991PubMedCrossRefGoogle Scholar
  107. 107.
    Tuli S, O’Hayon B, Drake JM, et al: Change in ventricular size and effect of ventricular catheter placement in pediatric shunted hydrocephalus. Neurosurgery 45:1329–1333, 1999)PubMedCrossRefGoogle Scholar
  108. 108.
    Ventureyra EC, Higgins MJ: A new ventricular catheter for the prevention and treatment of proximal obstruction in cerebrospinal fluid shunts. Neurosurgery 34:924–926, 1994PubMedCrossRefGoogle Scholar
  109. 109.
    Walker ML, Fried A, Petronio J: Diagnosis and treatment of the slit ventricle syndrome. Neurosurg Clin North Am 4:707–714, 1993Google Scholar
  110. 110.
    Watts C, Keith HD: Testing the hydrocephalus shunt valve. Child’s Brain 10:217–228, 1983PubMedGoogle Scholar
  111. 111.
    Will BE, Moller-Korbsch U, Bucholz R: Experience with the programmable Sophy SU-8 valve. Child’s Nerv Syst 10:476, 1994Google Scholar
  112. 112.
    Yamada S: Dynamic changes of cerebral spinal fluid in upright and recumbent shunted experimental animals. Child’s Brain 1:187–192, 1975PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2005

Authors and Affiliations

  • Howard J. Ginsberg
    • 1
  • James M. Drake
    • 1
  1. 1.Division of Neurosurgery, Hospital for Sick ChildrenUniversity of TorontoCanada

Personalised recommendations