Genetics of Hydrocephalus

  • Peter B. Dirks


Due to the complexity of organization and function of the human brain, a large proportion (estimates are >50%) of the 40 000 or so genes in the human genome are expected to be involved in the formation and function of the brain [20]. As hydrocephalus is a frequent manifestation of a variety of human neurological diseases, we are at a threshold for improved understanding of the molecular pathogenesis of hydrocephalus and its associated diseases. This review discusses the genetics of CNS disorders associated with hydrocephalus. In these disorders hydrocephalus is usually not the only clinical manifestation of a genetic defect, but is seen in the context of a more broad CNS malformation or syndrome. In this Chapter I intend to focus on disorders with hydrocephalus that have been significantly characterized from studies of human subjects and from studies of animal models. These animal studies, mainly using mice, have led to exciting discoveries that will prove to be breakthroughs for understanding the molecular pathogenesis of many disorders with hydrocephalus.


Tuberous Sclerosis Complex Neural Tube Defect Joubert Syndrome Adduct Thumb Aicardi Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aicardi J, Chevrie JJ, Rousselie F: Spasma-in-flexion syndrome, callosal agenesis, chorioretinal abnormalities. Arch Fr Pediatr 26:1103–1120, 1969PubMedGoogle Scholar
  2. 2.
    Allen WP: Folic acid in the prevention of birth defects. Curr Opin Pediatr 8:630–634, 1996PubMedCrossRefGoogle Scholar
  3. 3.
    Barber RC, Lammer EJ, Shaw GM, et al: The role of folate transport and metabolism in neural tube defect risk. Mol Genet Metab 66:1–9, 1999PubMedCrossRefGoogle Scholar
  4. 4.
    Barr M Jr, Cohen MM Jr: Holoprosencephaly survival and performance. Am J Med Genet 89:116–120, 1999PubMedCrossRefGoogle Scholar
  5. 5.
    Bateman A, Jouet M, MacFarlane J: Outline structure of the human L1 cell adhesion molecule and the sites where mutations cause neurological disorders. Embo J 15: 6050–6059, 1996PubMedGoogle Scholar
  6. 6.
    Blatt J, Jaffe R, Deutsch M, et al: Neurofibromatosis and childhood tumors. Cancer 57:1225–1229, 1986PubMedCrossRefGoogle Scholar
  7. 7.
    Brannan CI, Perkins AS, Vogel KS, et al: Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 8:1019–1029, 1994PubMedCrossRefGoogle Scholar
  8. 8.
    Burton BK: Recurrence risks for congenital hydrocephalus. Clin Genetics 16:47–53, 1979CrossRefGoogle Scholar
  9. 9.
    Carey JC, Viskochil DH: Neurofibromatosis type 1: A model condition for the study of the molecular basis of variable expressivity in human disorders. Am J Med Genet 89:7–13, 1999PubMedCrossRefGoogle Scholar
  10. 10.
    Chang MC, Russell SA, Callen PW, et al: Sonographic de tection of inferior vermian agenesis in Dandy-Walker malformations: prognostic implications. Radiology 193:765–770, 1994PubMedGoogle Scholar
  11. 11.
    Chiang C, Litingtung Y, Lee E, et al: Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383: 407–413, 1996PubMedCrossRefGoogle Scholar
  12. 12.
    Cichowski K, Shih TS, Schmitt E, et al: Mouse models of tumor development in neurofibromatosis type 1. Science 286:2172–2176, 1999PubMedCrossRefGoogle Scholar
  13. 13.
    Chitayat D, Moore L, Del Bigio MR, et al: Familial Dandy-Walker malformation associated with macrocephaly, facial anomalies, developmental delay, and brain stem dysgenesis: prenatal diagnosis and postnatal outcome in brothers. A new syndrome? Am J Med Genet 52: 406–415, 1994PubMedCrossRefGoogle Scholar
  14. 14.
    Cihangiroglu M, Franca C, Ramsey RG: Aicardi’s syndrome: a new finding. Pediatr Radiol 30:499–500, 2000PubMedCrossRefGoogle Scholar
  15. 15.
    Cincinnati P, Neri ME, Valentini A: Dandy-Walker anomaly in Meckel-Gruber syndrome. Clin Dysmorphol 9:35–38, 2000PubMedCrossRefGoogle Scholar
  16. 16.
    Cohen NR, Taylor JS, Scott LB, et al: Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Curr Biol 8: 26–33, 1998PubMedCrossRefGoogle Scholar
  17. 17.
    Colman SD, Williams CA, Wallace MR: Benign neurofibromas in type 1 neurofibromatosis (NF1) show somatic deletions of the NFi gene. Nat Genet 11:90–92, 1995PubMedCrossRefGoogle Scholar
  18. 18.
    Colvin JS, Bohne BA, Harding GW, et al: Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 12:390–397, 1996PubMedCrossRefGoogle Scholar
  19. 19.
    Copp AJ: Prevention of neural tube defects: vitamins, enzymes and genes. Curr Opin Neurol 11:97–102, 1998PubMedCrossRefGoogle Scholar
  20. 20.
    Cowan WM, Kandel ER: Prospects for neurology and psychiatry. JAMA 285:594–600, 2001PubMedCrossRefGoogle Scholar
  21. 21.
    Crino PB, Henske EP: New developments in the neurobiology of the tuberous sclerosis complex. Neurology 53:1384–1390, 1999PubMedCrossRefGoogle Scholar
  22. 22.
    Curatolo P: Neurological manifestations of tuberous sclerosis complex. Childs Nerv Syst 12:515–521, 1996PubMedCrossRefGoogle Scholar
  23. 23.
    Czeizel AE, Dudas I: Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327:1832–1835, 1992PubMedCrossRefGoogle Scholar
  24. 24.
    Czeizel AE: Primary prevention of neural-tube defects and some other major congenital abnormalities: recommendations for the appropriate use of folic acid during pregnancy. Paediatr Drugs 2:437–449, 2000PubMedCrossRefGoogle Scholar
  25. 25.
    da-Silva EO: Waardenburg I syndrome: a clinical and genetic study of two large Brazilian kindreds, and literature review. Am J Med Genet 40:65–74, 1991PubMedCrossRefGoogle Scholar
  26. 26.
    DeBella K, Szudek J, Friedman JM: Use of the National Institutes of Health criteria for diagnosis of neurofibromatosis 1 in children. Pediatrics 105: 608–614, 2000PubMedCrossRefGoogle Scholar
  27. 27.
    De Moerlooze L, Dickson C: Skeletal disorders associated with fibroblast growth factor receptor mutations. Curr Opin Genet Dev 7:378–385, 1997PubMedCrossRefGoogle Scholar
  28. 28.
    Deng C, Wynshaw-Boris A, Zhou F, et al: Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84:911–921, 1996PubMedCrossRefGoogle Scholar
  29. 29.
    DeSesso JM, Scialli AR, Holson JF: Apparent lability of neural tube closure in laboratory animals and humans. Am J Med Genet 87:143–162, 1999PubMedCrossRefGoogle Scholar
  30. 30.
    Dobyns WB, Pagon RA, Armstrong D, et al: Diagnostic criteria for Walker-Warburg syndrome. Am J Med Genet 32: 195–210, 1989PubMedCrossRefGoogle Scholar
  31. 31.
    Donnenfeld AE, Packer RJ, Zackai EH, et al: Clinical, cytogenetic, and pedigree findings in 18 cases of Aicardi syndrome. Am J Med Genet 32:461–467, 1989PubMedCrossRefGoogle Scholar
  32. 32.
    Edwards JH: The syndrome of sex-linked hydrocephalus. Arch Dis Child 36:486–493, 1961PubMedCrossRefGoogle Scholar
  33. 33.
    Edwards JH, Norman RM, Roberts JM: Sex-linked hydrocephalus. Report of a family with 15 affected members. Arch Dis Child 36:481–485, 1961PubMedCrossRefGoogle Scholar
  34. 34.
    Epstein DJ, Vekemans M, Gros P: Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 67:767–774, 1991PubMedCrossRefGoogle Scholar
  35. 35.
    Finckh U, Gal A: Prenatal molecular diagnosis of Li-spectrum disorders. Prenat Diagn 20:744–745, 2000PubMedCrossRefGoogle Scholar
  36. 36.
    Finckh U, Schroder J, Ressler B, et al: Spectrum and detection rate of LiCAM mutations in isolated and familial cases with clinically suspected Li-disease. Am J Med Genet 92:40–46, 2000PubMedCrossRefGoogle Scholar
  37. 37.
    Fleming A Copp AJ: Embryonic folate metabolism and mouse neural tube defects. Science, 280: 2107–2109, 1998PubMedCrossRefGoogle Scholar
  38. 38.
    Fransen E, Lemmon V, Van Camp G, et al: CRASH syndrome: clinical spectrum of corpus callosum hypoplasia, retardation, adducted thumbs, spastic paraparesis and hydrocephalus due to mutations in one single gene, L1. Eur J Hum Genet 3:273–284, 1995PubMedGoogle Scholar
  39. 39.
    Fransen E, Vits L, Van Camp G, et al: The clinical spectrum of mutations in L1, a neuronal cell adhesion molecule. Am J Med Genet 64:73–77, 1996PubMedCrossRefGoogle Scholar
  40. 40.
    Fransen E, D’Hooge R, Van Camp G, et al: L1 knockout mice show dilated ventricles, vermis hypoplasia and impaired exploration patterns. Hum Mol Genet 7: 999–1009, 1998PubMedCrossRefGoogle Scholar
  41. 41.
    Fransen E, Van Camp G, D’Hooge R, et al: Genotype-phenotype correlation in L1 associated diseases. J Med Genet 35:399–404, 1998PubMedCrossRefGoogle Scholar
  42. 42.
    Friedman JM: Epidemiology of neurofibromatosis type 1. Am J Med Genet 89:1–6, 1999PubMedCrossRefGoogle Scholar
  43. 43.
    Fukuhara S, Gutkind JS: A new twist for the tumour suppressor hamartin [news; comment]. Nat Cell Biol 2: E76–78, 2000PubMedCrossRefGoogle Scholar
  44. 44.
    Giovannini M, Robanus-Maandag E, Niwa-Kawakita M, et al: Schwann cell hyperplasia and tumors in transgenic mice expressing a naturally occurring mutant NF2 protein. Genes Dev 13:978–986, 1999PubMedCrossRefGoogle Scholar
  45. 45.
    Giovannini M, Robanus-Maandag E, van der Valk M, et al: Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev 14:1617–1630, 2000PubMedGoogle Scholar
  46. 46.
    Gluckman TJ, George TM, McLone DG: Postneurulation rapid brain growth represents a critical time for encephalocele formation: a chick model. Pediatr Neurosurg 25:130–136, 1996PubMedCrossRefGoogle Scholar
  47. 47.
    Golden JA: Towards a greater understanding of the pathogenesis of holoprosencephaly. Brain Dev 21:513–521, 1999PubMedCrossRefGoogle Scholar
  48. 48.
    Goodrich LV, Scott MP: Hedgehog and patched in neural development and disease. Neuron 21:1243–1257, 1998PubMedCrossRefGoogle Scholar
  49. 49.
    Gutmann DH, Collins FS: Neurofibromatosis type 1. Beyond positional cloning. Arch Neurol 50:1185–1193, 1993PubMedCrossRefGoogle Scholar
  50. 50.
    Gutmann DH, Aylsworth A, Carey JC, et al: The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2 [see comments]. JAMA 278:51–57, 1997PubMedCrossRefGoogle Scholar
  51. 51.
    Gutmann DH, Geist RT, Xu H, et al Defects in neurofibromatosis 2 protein function can arise at multiple levels. Hum Mol Genet 7:335–345, 1998PubMedCrossRefGoogle Scholar
  52. 52.
    Halliday J, Chow CW, Wallace D, et al: X linked hydrocephalus: a survey of a 20 year period in Victoria, Australia. J Med Genet 23:23–31, 1986PubMedCrossRefGoogle Scholar
  53. 53.
    Harris MJ, Juriloff DM: Mini-review: toward understanding mechanisms of genetic neural tube defects in mice. Teratology 60:292–305, 1999PubMedCrossRefGoogle Scholar
  54. 54.
    Haverkamp F, Wolfle J, Aretz M, et al: Congenital hydrocephalus internus and aqueduct stenosis: aetiology and implications for genetic counselling. Eur J Pediatr 158: 474–478, 1999PubMedCrossRefGoogle Scholar
  55. 55.
    Hecht JT, Nelson FW, Butler I J, et al: Computerized tomography of the foramen magnum: achondroplastic values compared to normal standards. Am J Med Genet 20: 355–360, 1985PubMedCrossRefGoogle Scholar
  56. 56.
    Hoi FA, Hamel BC, Geurds MP, et al: A frameshift mutation in the gene for PAX3 in a girl with spina bifida and mild signs of Waardenburg syndrome. J Med Genet 32:52–56, 1995CrossRefGoogle Scholar
  57. 57.
    Horwich A, Riccardi VM, Francke U: Brief clinical report: aqueductal stenosis leading to hydrocephalus-an unusual manifestation of neurofibromatosis. Am J Med Genet 14: 577–581, 1983PubMedCrossRefGoogle Scholar
  58. 58.
    Hoth CF, Milunsky A, Lipsky N, et al: Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). Am J Hum Genet 52: 455–462., 1993PubMedGoogle Scholar
  59. 59.
    Hoving EW, Vermeij-Keers C, Mommaas-Kienhuis AM, et al: Separation of neural and surface ectoderm after closure of the rostral neuropore. Anat Embryol 182: 455–463, 1990PubMedCrossRefGoogle Scholar
  60. 60.
    Hunter AG, Bankie A, Rogers JG, et al: Medical complications of achondroplasia: a multicentre patient review. J Med Genet 35:705–712, 1998PubMedCrossRefGoogle Scholar
  61. 61.
    Identification and characterization of the tuberous sclerosis gene on chromosome 16. The European Chromosome 16 Tuberous Sclerosis Consortium. Cell 75:1305–1315, 1993Google Scholar
  62. 62.
    Jacks T, Shih TS, Schmitt EM, et al: Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet 7:353–361, 1994PubMedCrossRefGoogle Scholar
  63. 63.
    Jones KL: Smith’s Recognizable Patterns of Human Malformation, p. 861. Saunders, Philadelphia, 1997Google Scholar
  64. 64.
    Jones AC, Shyamsundar MM, Thomas MW, et al: Comprehensive mutation analysis of TSC1 and TSC2-and pheno-typic correlations in 150 families with tuberous sclerosis. Am J Hum Genet 64:1305–1315, 1999PubMedCrossRefGoogle Scholar
  65. 65.
    Jouet M, Feldman E, Yates J, et al: Refining the genetic location of the gene for X linked hydrocephalus within Xq28. J Med Genet 30:214–217, 1993PubMedCrossRefGoogle Scholar
  66. 66.
    Joyner AL, Liu A, Millet S: Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr Opin Cell Biol 12:736–741, 2000PubMedCrossRefGoogle Scholar
  67. 67.
    Juriloff DM, Harris MJ: Mouse models for neural tube closure defects. Hum Mol Genet 9:993–1000, 2000PubMedCrossRefGoogle Scholar
  68. 68.
    Kamiguchi H, Hlavin ML, Lemmon V: Role of L1 in neural development: what the knockouts tell us. Mol Cell Neurosci 12:48–55, 1998PubMedCrossRefGoogle Scholar
  69. 69.
    Keiper GL Jr, Koch B, Crone KR: Achondroplasia and cervicomedullary compression: prospective evaluation and surgical treatment. Pediatr Neurosurg 31:78–83, 1999PubMedCrossRefGoogle Scholar
  70. 70.
    Kennedy D, Chitayat D, Winsor EJ, et al: Prenatally diagnosed neural tube defects: ultrasound, chromosome, and autopsy or postnatal findings in 212 cases. Am J Med Genet, 77:317–321, 1998PubMedCrossRefGoogle Scholar
  71. 71.
    Kenwrick S, Watkins A, Angelis ED: Neural cell recognition molecule Li: relating biological complexity to human disease mutations. Hum Mol Genet 9:879–886, 2000PubMedCrossRefGoogle Scholar
  72. 72.
    Kestle JR, Hoffman HJ, Mock AR: Moyamoya phenomenon after radiation for optic glioma. J Neurosurg 79:32–35, 1993PubMedCrossRefGoogle Scholar
  73. 73.
    Kobayashi T, Hirayama Y, Kobayashi E, et al: A germline insertion in the tuberous sclerosis (Tsc2) gene gives rise to the Eker rat model of dominantly inherited cancer. Nat Genet 9:70–74, 1995PubMedCrossRefGoogle Scholar
  74. 74.
    Kolble N, Wisser J, Kurmanavicius J, et al: Dandy-Walker malformation: prenatal diagnosis and outcome. Prenat Diagn 20:318–327, 2000PubMedCrossRefGoogle Scholar
  75. 75.
    Lamb RF, Roy C, Diefenbach TJ, et al: The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat Cell Biol 2:281–287, 2000PubMedCrossRefGoogle Scholar
  76. 76.
    Li J, Liu KC, Jin F, et al: Transgenic rescue of congenital heart disease and spina bifida in Splotch mice. Development 126: 2495–2503, 1999PubMedGoogle Scholar
  77. 77.
    Martin RA, Jones KL: Absence of the superior labial frenulum in holoprosencephaly: a new diagnostic sign. J Pediatr 133:151–153, 1998PubMedCrossRefGoogle Scholar
  78. 78.
    Martuza RL, Eldridge R: Neurofibromatosis 2 (bilateral acoustic neurofibromatosis). N Engl J Med 318:684–688, 1988PubMedCrossRefGoogle Scholar
  79. 79.
    McClatchey AI, Saotome I, Mercer K, et al: Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev 12: 1121–1133, 1998PubMedCrossRefGoogle Scholar
  80. 80.
    Menezes AV, MacGregor DL, Buncic JR: Aicardi syndrome: natural history and possible predictors of severity. Pediatr Neurol 11:313–318, 1994PubMedCrossRefGoogle Scholar
  81. 81.
    Mesoraca A, Pilu G, Perolo A, et al: Ultrasound and molecular mid-trimester prenatal diagnosis of de novo achondroplasia. Prenat Diagn 16:764–768, 1996PubMedCrossRefGoogle Scholar
  82. 82.
    Milien KJ, Millonig JH, Wingate RJ, et al: Neurogenetics of the cerebellar system. J Child Neurol 14: 574–581; discussion 581–572, 1999CrossRefGoogle Scholar
  83. 83.
    Moase CE, Trasler DG: Splotch locus mouse mutants: models for neural tube defects and Waardenburg syndrome type I in humans. J Med Genet 29:145–151, 1992PubMedCrossRefGoogle Scholar
  84. 84.
    Muenke M, Beachy PA: Genetics of ventral forebrain development and holoprosencephaly. Curr Opin Genet Dev 10:262–269, 2000PubMedCrossRefGoogle Scholar
  85. 85.
    Mulvihill JJ, Parry DM, Sherman JL, et al: NIH conference. Neurofibromatosis 1 (Recklinghausen disease) and neurofibromatosis 2 (bilateral acoustic neurofibromatosis). An update. Ann Intern Med 113:39–52, 1990PubMedGoogle Scholar
  86. 86.
    Murray JC, Johnson JA, Bird TD: Dandy-Walker malformation: etiologic heterogeneity and empiric recurrence risks. Clin Genet 28:272–283, 1985PubMedCrossRefGoogle Scholar
  87. 87.
    Naski MC, Wang Q, Xu J, et al: Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat Genet 13:233–237, 1996PubMedCrossRefGoogle Scholar
  88. 88.
    Neidich JA, Nussbaum RL, Packer RJ, et al: Heterogeneity of clinical severity and molecular lesions in Aicardi syndrome. J Pediatr 116:911–917, 1990PubMedCrossRefGoogle Scholar
  89. 89.
    Nellist M, van Slegtenhorst MA, Goedbloed M, et al: Characterization of the cytosolic tuberin-hamartin complex. Tuberin is a cytosolic chaperone for hamartin. J Biol Chem 274:35647–35652, 1999PubMedCrossRefGoogle Scholar
  90. 90.
    Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference. Arch Neurol 45:575–578, 1988CrossRefGoogle Scholar
  91. 91.
    Online Mendelian Inheritance in Man, OMIM (TM). McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University (Baltimore MD) and National Center for Biotechnology Information, National Library of Medicine, (Bethesda MD), 2001Google Scholar
  92. 92.
    Osenbach RK, Menezes AH: Diagnosis and management of the Dandy-Walker malformation: 30 years of experience. Pediatr Neurosurg 18:179–189, 1992PubMedCrossRefGoogle Scholar
  93. 93.
    Peter JC, Fieggen G: Congenital malformations of the brain-a neurosurgical perspective at the close of the twentieth century. Childs Nerv Syst 15:635–645, 1999PubMedCrossRefGoogle Scholar
  94. 94.
    Pierre-Kahn A, Hirsch JF, Renier D, et al: Hydrocephalus and achondroplasia. A study of 25 observations. Childs Brain 7:205–219, 1980PubMedGoogle Scholar
  95. 95.
    Pomili G, Venti Donti G, Alunni Carrozza L, et al: MASA syndrome: ultrasonographic evidence in a male fetus. Prenat Diagn 20:1012–1014, 2000PubMedCrossRefGoogle Scholar
  96. 96.
    Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRC Vitamin Study Research Group. Lancet 338:131–137, 1991Google Scholar
  97. 97.
    Quisling RG, Barkovich AJ, Maria BL: Magnetic resonance imaging features and classification of central nervous system malformations in Joubert syndrome. J Child Neurol 14: 628–635; discussion 669–672, 1999PubMedCrossRefGoogle Scholar
  98. 98.
    Rhinn M, Brand M: The midbrain-hindbrain boundary organizer. Curr Opin Neurobiol 11:34–42, 2001PubMedCrossRefGoogle Scholar
  99. 99.
    Riccardi VM: Von Recklinghausen neurofibromatosis. N Engl J Med 305:1617–1627, 1981PubMedCrossRefGoogle Scholar
  100. 100.
    Roach ES, Smith M, Huttenlocher P, et al: Diagnostic criteria: tuberous sclerosis complex. Report of the Diagnostic Criteria Committee of the National Tuberous Sclerosis Association. J Child Neurol 7:221–224, 1992PubMedCrossRefGoogle Scholar
  101. 101.
    Roach ES, Gomez MR, Northrup H: Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria. J Child Neurol 13:624–628, 1998PubMedCrossRefGoogle Scholar
  102. 102.
    Roach ES, DiMario FJ, Kandt RS, et al: Tuberous Sclerosis Consensus Conference: recommendations for diagnostic evaluation. National Tuberous Sclerosis Association. J Child Neurol 14:401–407, 1999PubMedCrossRefGoogle Scholar
  103. 103.
    Roessler E, Belloni E, Gaudenz K, et al: Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet 14:357–360, 1996PubMedCrossRefGoogle Scholar
  104. 104.
    Roessler E, Muenke M: Holoprosencephaly: a paradigm for the complex genetics of brain development. J Inherit Metab Dis 21:481–497, 1998PubMedCrossRefGoogle Scholar
  105. 105.
    Roessler E, Muenke M: The molecular genetics of holoprosencephaly: a model of brain development for the next century. Childs Nerv Syst 15:646–651, 1999PubMedCrossRefGoogle Scholar
  106. 106.
    Rosenthal A, Jouet M, Kenwrick S: Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nat Genet 2:107–112, 1992PubMedCrossRefGoogle Scholar
  107. 107.
    Rouleau GA, Merel P, Lutchman M, et al: Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363: 515–521, 1993PubMedCrossRefGoogle Scholar
  108. 108.
    Rousseau F, Bonaventure J, Legeai-Mallet L, et al: Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371:252–254, 1994PubMedCrossRefGoogle Scholar
  109. 109.
    Rowitch DH, Danielian PS, McMahon AP, et al: Cystic malformations of the posterior cerebellar vermis in transgenic mice that ectopically express Engrailed-1, a homeodomain transcription factor. Teratology 60:22–28, 1999PubMedCrossRefGoogle Scholar
  110. 110.
    Ruggieri M: The different forms of neurofibromatosis. Childs Nerv Syst 15:295–308, 1999PubMedCrossRefGoogle Scholar
  111. 111.
    Rutkowski JL, Wu K, Gutmann DH, et al: Genetic and cellular defects contributing to benign tumor formation in neurofibromatosis type 1. Hum Mol Genet 9:1059–1066, 2000PubMedCrossRefGoogle Scholar
  112. 112.
    Sainte-Rose C, LaCombe J, Pierre-Kahn A, et al: Intracranial venous sinus hypertension: cause or consequence of hydrocephalus in infants? J Neurosurg 60:727–736, 1984PubMedCrossRefGoogle Scholar
  113. 113.
    Sawada S, Florell S, Purandare SM, et al: Identification of NFi mutations in both alleles of a dermal neurofibroma. Nat Genet 14:110–112, 1996PubMedCrossRefGoogle Scholar
  114. 114.
    Schievink WI, Piepgras DG: Cervical vertebral artery aneurysms and arteriovenous fistulae in neurofibromatosis type 1: case reports. Neurosurgery 29:760–765, 1991PubMedCrossRefGoogle Scholar
  115. 115.
    Schrander-Stumpel C, Fryns J P: Congenital hydrocephalus: nosology and guidelines for clinical approach and genetic counselling. Eur J Pediatr 157:355–362, 1998PubMedCrossRefGoogle Scholar
  116. 116.
    Senveli E, Altinors N, Kars Z, et al: Association of von Recklinghausen’s neurofibromatosis and aqueduct stenosis. Neurosurgery 24:99–101, 1989PubMedCrossRefGoogle Scholar
  117. 117.
    Shiang R, Thompson LM, Zhu YZ, et al: Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78:335–342, 1994PubMedCrossRefGoogle Scholar
  118. 118.
    Sobata E, Ohkuma H, Suzuki S: Cerebrovascular disorders associated with von Recklinghausen’s neurofibromatosis: a case report. Neurosurgery 22:544–549, 1988PubMedCrossRefGoogle Scholar
  119. 119.
    Steinbok P, Hall J, Flodmark O: Hydrocephalus in achondroplasia: the possible role of intracranial venous hypertension. J Neurosurg 71:42–48, 1989PubMedCrossRefGoogle Scholar
  120. 120.
    Tassabehji M, Read AP, Newton VE, et al: Mutations in the PAX3 gene causing Waardenburg syndrome type 1 and type 2. Nat Genet 3:26–30, 1993PubMedCrossRefGoogle Scholar
  121. 121.
    Timor-Tritsch IE, Monteagudo A, Haratz-Rubinstein N, et al: Transvaginal sonographic detection of adducted thumbs, hydrocephalus, and agenesis of the corpus callosum at 22 postmenstrual weeks: the masa spectrum or L1 spectrum. A case report and review of the literature. Prenat Diagn 16:543–548, 1996PubMedCrossRefGoogle Scholar
  122. 122.
    Trofatter JA, MacCollin MM, Rutter JL, et al: A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 75:826, 1993PubMedCrossRefGoogle Scholar
  123. 123.
    Uchiyama CM, Carey CM, Cherny WB, et al: Choroid plexus papilloma and cysts in the Aicardi syndrome: case reports. Pediatr Neurosurg, 27:100–104, 1997PubMedCrossRefGoogle Scholar
  124. 124.
    Van Camp G, Vits L, Coucke P, et al: A duplication in the LiCAM gene associated with X-linked hydrocephalus. Nat Genet 4:421–425, 1993PubMedCrossRefGoogle Scholar
  125. 125.
    van Slegtenhorst M, de Hoogt R, Hermans C, et al: Identification of the tuberous sclerosis gene TSCi on chromosome 9q34. Science 277:805–808, 1997PubMedCrossRefGoogle Scholar
  126. 126.
    Villavicencio EH, Walterhouse DO, Iannaccone PM: The sonic hedgehog-patched-gli pathway in human development and disease. Am J Hum Genet 67:1047–1054, 2000PubMedGoogle Scholar
  127. 127.
    Vogel KS, Klesse LJ, Velasco-Miguel S, et al: Mouse tumor model for neurofibromatosis type 1. Science 286: 2176–2179, 1999PubMedCrossRefGoogle Scholar
  128. 128.
    Walsh CA: Genetic malformations of the human cerebral cortex. Neuron 23:19–29, 1999PubMedCrossRefGoogle Scholar
  129. 129.
    Wang Y, Spatz MK, Kannan K, et al: A mouse model for achondroplasia produced by targeting fibroblast growth factor receptor 3. Proc Natl Acad Sci U S A 96:4455–4460, 1999PubMedCrossRefGoogle Scholar
  130. 130.
    Webster MK, Donoghue DJ: Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia. EMBO 115:520–527, 1996Google Scholar
  131. 131.
    Wienecke R, Konig A, DeClue JE: Identification of tuberin, the tuberous sclerosis-2 product. Tuberin possesses specific Rap1GAP activity. J Biol Chem 270: 16409–16414, 1995PubMedCrossRefGoogle Scholar
  132. 132.
    Willems PJ, Brouwer OF, Dijkstra I, et al: X-linked hydrocephalus. Am J Med Genet 27:921–928, 1987PubMedCrossRefGoogle Scholar
  133. 133.
    Willems PJ, Dijkstra I, Van der Auwera BJ, et al: Assignment of X-linked hydrocephalus to Xq28 by linkage analysis. Genomics 8:367–370, 1990PubMedCrossRefGoogle Scholar
  134. 134.
    Wingate RJ: The rhombic lip and early cerebellar development. Curr Opin Neurobiol 11: 82–88, 2001PubMedCrossRefGoogle Scholar
  135. 135.
    Wininger SJ, Donnenfeld AE: Syndromes identified in fetuses with prenatally diagnosed cephaloceles. Prenat Diagn 14:839–843, 1994PubMedCrossRefGoogle Scholar
  136. 136.
    Xiao GH, Shoarinejad F, Jin F, et al: The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis. J Biol Chem 272:6097–6100, 1997PubMedCrossRefGoogle Scholar
  137. 137.
    Yamasaki M, Thompson P, Lemmon V: CRASH syndrome: mutations in LiCAM correlate with severity of the disease. Neuropediatrics 28:175–178, 1997PubMedCrossRefGoogle Scholar
  138. 138.
    Yapar EG, Ekici E, Dogan M, et al: Meckel-Gruber syndrome concomitant with Dandy-Walker malformation: prenatal sonographic diagnosis in two cases. Clin Dysmorphol 5:357–362, 1996PubMedCrossRefGoogle Scholar
  139. 139.
    Zanata G: Encephalocele: experimental model. Morphogenesis, pathogenesis and clinical correlations discussion. J Neurosurg Sci 41:235–248, 1997PubMedGoogle Scholar
  140. 140.
    Zucman-Rossi J, Legoix P, Der Sarkissian H, et al: NF2 gene in neurofibromatosis type 2 patients. Hum Mol Genet 7:2095–2101, 1998PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2005

Authors and Affiliations

  • Peter B. Dirks
    • 1
  1. 1.Division of Neurosurgery, Hospital for Sick ChildrenUniversity of TorontoTorontoCanada

Personalised recommendations