Monounsaturated Fatty Acids and Neuroprotection. The Results of a Study of Cognitive Decline in Old Age. Is There a Case for this Treatment in Multiple Sclerosis?

  • A. Capurso
  • F. Panza
  • V. Solfrizzi
  • C. Capurso
  • A. D’Introno
  • S. Capurso
  • A. M. Colacicco
Part of the Topics in Neuroscience book series (TOPNEURO)


Different diagnostic criteria have been proposed to distinguish individuals with mild cognitive disorders associated with aging. One of the best established of these classifications is age-associated memory impairment (AAMI) [1], but it is generally non-progressive and is thus more likely to be a phenomenon of normal aging [2, 3]. The terms “age-related cognitive decline” (ARCD) and “aging-associated cognitive decline” have been proposed recently [4, 5] to indicate an objective decline in cognitive functioning associated with the aging process but within normal limits given the person’s age. Whether ARCD is an expression of a normal aging process, represents a distinct clinical entity, or is a continuum with dementia is still difficult to establish [2, 6]. Recent results from longitudinal studies suggest that the subgroup at high risk for developing dementia may be identified by using a more-detailed procedure for the assessment of cognitive decline than those listed in the AAMI criteria. A high incidence (45%) of dementia was found in individuals aged >75 years who were diagnosed as having “minimal dementia” by the CAMDEX interview [7]. Furthermore, in another study 48% of patients with isolated memory loss of unknown cause developed dementia within 3.7 years [8].


Multiple Sclerosis Cognitive Decline Multiple Sclerosis Patient Mediterranean Diet Macronutrient Intake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crook T, Bartus RT, Ferris SH et al (1986) Age-associated memory impairment: proposed diagnostic criteria and measures of clinical change — report of a National Institute of Mental Health Work Group. Dev Neuropsychol 2:261–276CrossRefGoogle Scholar
  2. 2.
    Hanninen T, Hallikainen M, Koivisto K et al (1995) A follow-up study of age-associated memory impairment: neuropsychological predictors of dementia. J Am Geriatr Soc 43:1007–1015PubMedGoogle Scholar
  3. 3.
    Ritchie K, Leibovici D, Ledesert B et al (1996) A typology of subclinical senescent cognitive disorder. Br J Psychiatry 168:470–476PubMedCrossRefGoogle Scholar
  4. 4.
    American Psychiatric Association Committee on Nomenclature and Statistics (1994) Diagnostic and statistical manual of mental disorders. 4th edn (DSM-IV). American Psychiatric Association, WashingtonGoogle Scholar
  5. 5.
    Levy R (1994) Aging-associated cognitive decline. Working Party of the International Psychogeriatrics Association in collaboration with the World Health Organization. Int Psychogeriatr 6:63–68PubMedCrossRefGoogle Scholar
  6. 6.
    Brayne C, Calloway P (1988) Normal ageing, impaired cognitive function and senile dementia of Alzheimer type: a continuum? Lancet I:1265–1267CrossRefGoogle Scholar
  7. 7.
    Paykel ES, Brayne C, Huppert FA et al (1994) Incidence of dementia in a population older than 75 years in the United Kingdom. Arch Gen Psychiatry 51:325–332PubMedCrossRefGoogle Scholar
  8. 8.
    Bowen J, Teri L, Kukull W, McCormick W, McCurry SM, Larson EB (1997) Progression to dementia in patients with isolated memory loss. Lancet 349:763–765PubMedCrossRefGoogle Scholar
  9. 9.
    Nolan KA, Blass JP (1992) Preventing cognitive decline. Clin Geriatr Med 8:19–34PubMedGoogle Scholar
  10. 10.
    Fillit HM (1997) The clinical significance of normal cognitive decline in late life. In: Fillit HM, Butler RN (eds) Cognitive decline. Strategies for prevention. Oxford University Press, Oxford, pp 1–7Google Scholar
  11. 11.
    Breteler MMB et al (1994) Cardiovascular disease and distribution of cognitive function in elderly people: the Rotterdam Study. BMJ 308:1604–1608PubMedCrossRefGoogle Scholar
  12. 12.
    Launer LJ et al (1995) The association between midlife blood pressure levels and late-life cognitive function. JAMA 274:1846–1851PubMedCrossRefGoogle Scholar
  13. 13.
    Richardson JT (1990) Cognitive function in diabetes mellitus. Neurosci Biobehav Rev 14:385–388PubMedCrossRefGoogle Scholar
  14. 14.
    Blazer D, Burchett B, Service C, Grorge LK (1991) The association of age and depression among the elderly: an epidemiologic exploration. J Gerontol 46:M210–M215PubMedCrossRefGoogle Scholar
  15. 15.
    Rogers RL, Meyer JS, Mortal KF (1990) After reaching retirement age, physical activity sustains cerebral perfusion and cognition. J Am Geriatr Soc 38:123–128PubMedGoogle Scholar
  16. 16.
    White LR, Foley DJ, Havlik RJ (1997) Lifestyle risk factors for cognitive impairment. In: Fillit HM, Butler RN (eds.) Cognitive decline. Strategies for prevention. Oxford, University Press, Oxford, pp 23–32Google Scholar
  17. 17.
    Sahyoun NR, Otradovec CL, Hartz SC et al (1988) Dietary intakes and biochemical indicators of nutritional status in an elderly, institutionalized population. Am J Clin Nutr 47:524–533PubMedGoogle Scholar
  18. 18.
    Goodwin J, Goodwin J, Garry P (1983) Association between nutritional status and cognitive functioning in a healthy elderly population. JAMA 249:2917–2921PubMedCrossRefGoogle Scholar
  19. 19.
    Siebens H, Trupe E, Siebens A et al (1986) Correlates and consequences of eating dependency in institutionalized elderly. J Am Geriatr Soc 34:192–198PubMedGoogle Scholar
  20. 20.
    Capurso A, Solfrizzi V, Panza F et al (1997) Dietary patterns and cognitive functions in elderly subjects. Aging Clin Exp Res 9 [Suppl]:45–47Google Scholar
  21. 21.
    Solfrizzi V, Panza F, Torres F et al (1999) High monounsaturated fatty acids intake protects against age-related cognitive decline. Neurology 52:1563–1569PubMedCrossRefGoogle Scholar
  22. 22.
    Panza F, Solfrizzi V, Colacicco AM et al (2003) Mediterranean diet and cognitive decline. Public Health Nutr (in press)Google Scholar
  23. 23.
    Amaducci L, Baldereschi M, Di Carlo A et al (1997) Prevalence of chronic diseases in older Italians: comparing self-reported and clinical diagnoses. Int J Epidemiol 26:995–1002CrossRefGoogle Scholar
  24. 24.
    Folstein MF, Folstein SE, McHugh PR (1975) “Mini-Mental State”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198PubMedCrossRefGoogle Scholar
  25. 25.
    Spinnler H, Tognoni G (1987) Standardizzazione e taratura italiana di test neuropsicologici. Ital J Neurol Sci 6 [Suppl 8]:12–120CrossRefGoogle Scholar
  26. 26.
    Barigazzi R, Della Sala S, Laiacona M, Spinnler H, Valenti V (1987) Esplorazione testistica della memoria di prosa. Ric Psicol 1:50–80Google Scholar
  27. 27.
    La Rue A, Koehler KM, Wayne SJ, Chiulli SJ, Haaland KY, Garry PJ (1997) Nutritional status and cognitive functioning in a normally aging sample: a 6-y reassessment. Am J Clin Nutr 65:20–29PubMedGoogle Scholar
  28. 28.
    Pradignac A, Schlienger M, Velten M, Mejean L (1995) Relationships between macronutrient intake, handicaps, and cognitive impairments in free living elderly people. Aging Clin Exp Res 7:67–74Google Scholar
  29. 29.
    Ortega RM, Requejo AM, Andres P et al (1997) Dietary intake and cognitive function in a group of elderly people. Am J Clin Nutr 66:803–809PubMedGoogle Scholar
  30. 30.
    Manna C, Galletti P, Cucciolla V, Moltedo O, Leone A, Zappia V (1997) The protective effect of the olive oil polyphenol (3,3-dihydroxyphenyl)-ethanol counteract reactive oxygen metabolite-indeced cytotoxicity in Caco-2 cells. J Nutr 127:286–292PubMedGoogle Scholar
  31. 31.
    Mittenberg W, Seidenberg M, O’Leary DS, Di Giulio DV (1989) Changes in cerebral functioning associated with normal aging. J Clin Exp Neuropsychol 11:918–932PubMedCrossRefGoogle Scholar
  32. 32.
    Jama JW, Launer LJ, Witteman JC et al (1996) Dietary antioxidants and cognitive function in a population-based sample of older persons. The Rotterdam study. Am J Epidemiol 144:275–280PubMedCrossRefGoogle Scholar
  33. 33.
    Lopez GH, Ilincheta de Boschero MG, Castagnet PI, Giusto NM (1995) Age-associated changes in the content and fatty acids composition of brain glycerophospholipids. Comp Biochem Physiol B Biochem Mol Biol 112:331–343PubMedCrossRefGoogle Scholar
  34. 34.
    Marzo I, Martinez-Lorenzo MJ, Anel A et al (1995) Biosynthesis of unsaturated fatty acids in the main cell lineages of human leukemia and lymphoma. Biochim Biophys Acta 1257:140–148PubMedCrossRefGoogle Scholar
  35. 35.
    Kalmijn S, Feskens EJ, Launer LJ, Kromhout D (1997) Polyunsaturated fatty acids, antioxidants, and cognitive functions in very old men. Am J Epidemiol 145:33–41PubMedCrossRefGoogle Scholar
  36. 36.
    Swank RL (1950) Multiple sclerosis: a correlation of its incidence with dietary fat. Am J Med Sci 220:441–450CrossRefGoogle Scholar
  37. 37.
    Swank RL, Dugan BB (1990) Effect of low saturated fat diet in early and late cases of multiple sclerosis. Lancet 336:37–39PubMedCrossRefGoogle Scholar
  38. 38.
    Alter M, Yamoor M, Harshe M (1974) Multiple sclerosis and nutrition. Arch Neurol 31:267–272PubMedCrossRefGoogle Scholar
  39. 39.
    Agranoff BW, Goldberg D (1974) Diet and the geographical distribution of multiple sclerosis. Lancet II:1061–1066CrossRefGoogle Scholar
  40. 40.
    Bates D (1989) Lipids and multiple sclerosis. Biochem Soc Trans 17:289–291PubMedGoogle Scholar
  41. 41.
    Angulo-Guerrero O, Oliart RR (1998) Effects of dietary polyunsaturated fatty acids on rat brain plasma membrane fatty acid composition. Arch Latinoam Nutr 48:287–292PubMedGoogle Scholar
  42. 42.
    Fernstrom JD (1999) Effects of dietary polyunsaturated fatty acids on neural function. Lipids 34:161–169PubMedCrossRefGoogle Scholar
  43. 43.
    Swank RL (1991) Multiple sclerosis: fat oil relationship. Nutrition 7:368–376PubMedGoogle Scholar
  44. 44.
    Millar JH, Zilkha KJ, Langman MJ et al (1973) Double blind trial of linoleate supplementation of the diet in multiple sclerosis. BMJ 31:765–768CrossRefGoogle Scholar
  45. 45.
    Bates D, Fawcett PR, Shaw DA, Weightman D (1978) Polyunsaturated fatty acids in treatment of acute remitting multiple sclerosis. BMJ 2:1390–1392PubMedCrossRefGoogle Scholar
  46. 46.
    Paty DW, Cousin HK, Read S, Adlakha K (1978) Linoleic acid in multiple sclerosis; failure to show the therapeutic benefit. Acta Neurol Scand 58:53–58PubMedCrossRefGoogle Scholar
  47. 47.
    Bates D, Cartlidge NE, French JM et al (1989) A double blind controlled trial of long chain n-3 polyunsaturated fatty acids in the treatment of multiple sclerosis. J Neurol Neurosurg Psychiatry 52:18–22PubMedCrossRefGoogle Scholar
  48. 48.
    Kurtzke JF (1975) Reassessment of the distribution of multiple sclerosis. Acta Neurol Scand 51:110–136PubMedCrossRefGoogle Scholar
  49. 49.
    Esparza ML, Sasaki S, Kesteloot H (1995) Nutrition, latitude, and multiple sclerosis mortality: an ecologic study. Am J Epidemiol 142:733–737PubMedGoogle Scholar
  50. 50.
    Mach F, Schonbeck U, Libby P (1998) CD40 signaling in vascular cells: a key role in atherosclerosis? Atherosclerosis [Suppl] 137:S89–S95CrossRefGoogle Scholar
  51. 51.
    Gerritse K, Laman JD, Noelle RJ et al (1996) CD40–CD40 ligand interactions in experimental allergic encephalommyelitis and multiple sclerosis. Proc Natl Acad Sci USA 93:2499–2504PubMedCrossRefGoogle Scholar
  52. 52.
    Schoenherr WD, Jewel DE (1997) Nutritional modification of inflammatory disease. Semin Vet Med Surg (Small Anim) 12:212–222CrossRefGoogle Scholar
  53. 53.
    Grimble RF, Tappia PS (1998) Modulation of pro-inflammatory cytokines biology by unsaturated fatty acids. Z Ernahrungswiss 37 [suppl 1]:57–65PubMedGoogle Scholar
  54. 54.
    Yagoob P, Pala HS, Cortina-Borja M et al (1998) Effect of olive oil on immune function in middle-aged men. Am J Clin Nutr 67:129–135Google Scholar
  55. 55.
    Carluccio MA, Massaro M, Bonfrate C et al (1999) Oleic acid inhibits endothelial activation: a direct vascular antiatherogenic mechanism of a nutritional component in the Mediterranean diet. Arterioscler Thromb Vasc Biol 19:220–228PubMedCrossRefGoogle Scholar
  56. 56.
    Massaro M, Carluccio MA, De Caterina R (1999) Direct vascular antiatherogenic effects of oleic acid: a clu’ to the cardioprotective effects of the Mediterranean diet. Cardiologia 44:507–513PubMedGoogle Scholar
  57. 57.
    De Andres C, Lledo A (1997) Fatty diet and multiple sclerosis. Rev Neurol 25:20322035PubMedGoogle Scholar
  58. 58.
    Chapman J, Sylantiev C, Nisipeanu P, Korczyn AD (1999) Preliminary observations on APOE e4 allele and progression of disability in multiple sclerosis. Arch Neurol 56:1484–1487PubMedCrossRefGoogle Scholar
  59. 59.
    Chiba H (1996) Physiology and pathology of the lipid transport in the brain. Rinsho Byori 44:231–236PubMedGoogle Scholar
  60. 60.
    Beisiegel U, Weber W, Ihrke G, Herz J, Stanley KK (1989) The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein. Nature 34:162–164CrossRefGoogle Scholar
  61. 61.
    Wang X, Ciraolo G, Morris R, Gruenstein E (1997) Identification of a neuronal endocytic pathway activated by an apolipoprotein E (apoE) receptor binding peptide. Brain Res 778:6–15PubMedCrossRefGoogle Scholar
  62. 62.
    Kowal RC, Herz J, Goldstein JL, Esser V, Brown MS (1989) Low density lipoprotein receptor related protein mediates uptake of cholesteryl esters derived from apoprotein E-enriched lipoproteins. Proc Natl Acad Sci USA 86:5810–5814PubMedCrossRefGoogle Scholar
  63. 63.
    Gliemann J (1998) Receptors of the low density lipoprotein (LDL) receptor family in man. Multiple functions of the large family members via interaction with complex ligand. Biol Chem 379:951–964PubMedGoogle Scholar
  64. 64.
    Corbo RM, Scacchi R, Mureddu L, Mulas G, Alfano G (1995) Apolipoprotein E polymorphism in Italy investigated in native plasma by a simple polyacrylamide gel isoelectric focusing technique. Comparison with frequency data of other European populations. Ann Hum Genet 59:197–209PubMedCrossRefGoogle Scholar
  65. 65.
    Gerdes LU, Klausen IC, Sihm I, Faergeman O (1992) Apoliprotein E polymorphism in a Danish population compared to findings in 45 other populations around the world. Genet Epidemiol 9:155–167PubMedCrossRefGoogle Scholar
  66. 66.
    Panza F, Solfrizzi V, Torres F et al (1999) Decreased frequency of apolipoprotein E epsilon4 allele from Northern to Southern Europe in Alzheimer’s disease patients and centenarians. Neurosci Lett 277:53–56PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2004

Authors and Affiliations

  • A. Capurso
  • F. Panza
  • V. Solfrizzi
  • C. Capurso
  • A. D’Introno
  • S. Capurso
  • A. M. Colacicco

There are no affiliations available

Personalised recommendations