Skip to main content

Imaging for Tissue Characterization in Multiple Sclerosis and Other White Matter Diseases

  • Chapter
  • 148 Accesses

Part of the book series: Topics in Neuroscience ((TOPNEURO))

Abstract

In white matter diseases (WMD), conventional magnetic resonance imaging (MRI) has proved to be sensitive for detecting lesions and their changes over time. However, conventional MRI is not able to characterize and quantify the tissue damage within and outside these lesions. Other quantitative MR techniques have the potential to overcome such limitation. Among these techniques, MR spectroscopy (MRS), magnetization transfer imaging (MTI), and diffusion-weighted imaging (DWI) have been most extensively applied to the assessment of WMD. The present review will summarize the major contributions of these three MR techniques to the understanding of the evolution of WMD, with a special focus on multiple sclerosis (MS). The application of MR techniques to the study of MS has indeed dramatically changed our understanding of how MS causes irreversible deficits and can serve as a useful model to be applied to other WMD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davie CA, Hawkins CP, Barker GJ et al (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117:49–58

    Article  PubMed  Google Scholar 

  2. De Stefano N, Matthews PM, Antel JP et al (1995) Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 38:901–909

    Article  PubMed  Google Scholar 

  3. Narayana PA, Doyle TI, Lai D, Wolinsky JS (1998) Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol 43:56–71

    Article  PubMed  CAS  Google Scholar 

  4. Arnold DL, Matthews PM, Francis GS et al (1992) Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Ann Neurol 31:235–241

    Article  PubMed  CAS  Google Scholar 

  5. De Stefano N, Matthews PM, Arnold DL (1995) Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med 34:721–727

    Article  PubMed  Google Scholar 

  6. Falini A, Calabrese G, Filippi M et al (1998) Benign versus secondary progressive multiple sclerosis: the potential role of 1H MR spectroscopy in defining the nature of disability. AJNR Am J Neuroradiol 19:223–229

    PubMed  CAS  Google Scholar 

  7. Arnold DL, Riess GT, Matthews PM et al (1994) Use of proton magnetic resonance spectroscopy for monitoring disease progression in multiple sclerosis. Ann Neurol 36:76–82

    Article  PubMed  CAS  Google Scholar 

  8. Davie CA, Barker GJ, Webb S et al (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 118:1583–1592

    Article  PubMed  Google Scholar 

  9. Matthews PM, Pioro E, Narayanan S et al (1996) Assessment of lesion pathology in multiple sclerosis using quantitative MRI morphometry and magnetic resonance spectroscopy. Brain 119:715–722

    Article  PubMed  Google Scholar 

  10. De Stefano N, Matthews PM, Fu L et al (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121:1469–1477

    Article  PubMed  Google Scholar 

  11. Filippi M, Tortorella C, Bozzali M (1999) Normal-appearing white matter changes in multiple sclerosis: the contribution of magnetic resonance techniques. Mult Scler 5:273–282

    PubMed  CAS  Google Scholar 

  12. De Stefano N, Narayanan S, Matthews PM et al (1999) In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis. Brain 122:1933–1939

    Article  PubMed  Google Scholar 

  13. Davie CA, Barker GJ, Thompson AJ et al (1997) 1H magnetic resonance spectroscopy of chronic cerebral white matter lesions and normal appearing white matter in multiple sclerosis. J Neurol Neurosurg Psychiatry 63:736–742

    Article  PubMed  CAS  Google Scholar 

  14. Fu L, Matthews PM, De Stefano N et al (1998) Imaging of axonal damage of normal appearing white matter in multiple sclerosis. Brain 121:103–113

    Article  PubMed  Google Scholar 

  15. De Stefano N, Federico A, Arnold DL (1997) Proton magnetic resonance spectroscopy in brain white matter disorders. Ital J Neurol Sci 18: 331–339

    Article  PubMed  Google Scholar 

  16. Austin SJ, Connelly A, Gadian DG et al (1991) Localized 1H NMR spectroscopy in Canavan’s disease: a report of two cases. Magn Reson Med 19:439–445

    Article  PubMed  CAS  Google Scholar 

  17. van der Knaap MS, Wevers RA, Struys EA et al (1995) Leukoencephalopathy with swelling and a discrepantly mild clinical course in eight children. Ann Neurol 37:324–334

    Article  PubMed  Google Scholar 

  18. Ross BD, Bluml S, Cowan R et al (1997) In vivo magnetic resonance spectroscopy of human brain: the biophysical basis of dementia. Biophys Chem 68:161–172

    Article  PubMed  CAS  Google Scholar 

  19. Bruhn H, Kruse B, Korenke GC et al (1992) Proton NMR spectroscopy of cerebral metabolic alterations in infantile peroxisomal disorders. J Comput Assist Tomogr 16:335–344

    Article  PubMed  CAS  Google Scholar 

  20. Johannik K, Van Hecke P, Francois B et al (1994) Localized brain proton NMR spectroscopy in young adult phenylketonuria patients. Magn Reson Med 31:53–57

    Article  PubMed  CAS  Google Scholar 

  21. Tzika AA, Ball WS Jr, Vigneron DB et al (1993) Childhood adrenoleukodystrophy: assessment with proton MR spectroscopy. Radiology 189:467–480

    PubMed  CAS  Google Scholar 

  22. Kruse B, Hanefeld F, Christen HJ et al (1993) Alterations of brain metabolites in metachromatic leukodystrophy as detected by localized proton magnetic resonance spectroscopy in vivo. J Neurol 241:68–74

    Article  PubMed  CAS  Google Scholar 

  23. van der Knaap MS, van der Grond J, Luyten PR et al (1992)1H and31P magnetic resonance spectroscopy of the brain in degenerative cerebral disorders. Ann Neurol 31:202–211

    Article  PubMed  Google Scholar 

  24. Kruse B, Barker PB, van Zijl PC et al (1994) Multislice proton magnetic resonance spectroscopic imaging in X- linked adrenoleukodystrophy. Ann Neurol 36:595–608

    Article  PubMed  CAS  Google Scholar 

  25. Filippi M, Grossman RI, Comi G (eds) (1999) Magnetization transfer in multiple sclerosis. Neurology 53 [Suppl 3]

    Google Scholar 

  26. van Waesberghe JH, Kamphorst W, De Groot CJ et al (1999) Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol 46:747–754

    Article  PubMed  Google Scholar 

  27. Dousset V, Dousset V, Grossman RI, Ramer KN et al (1992) Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology 182:483–491

    PubMed  CAS  Google Scholar 

  28. Lai HM, Davie CA, Gass A et al (1997) Serial magnetization transfer ratios in gadolinium-enhancing lesions in multiple sclerosis. J Neurol 244:308–311

    Article  PubMed  CAS  Google Scholar 

  29. Campi A, Filippi M, Comi G et al (1996) Magnetization transfer ratios of contrast-enhancing and nonenhancing lesions in multiple sclerosis. Neuroradiology 38:115–119

    Article  PubMed  CAS  Google Scholar 

  30. Hiehle JF, Grossman RI, Ramer NK et al (1995) Magnetization transfer effects in MR-detected multiple sclerosis lesions: comparison with gadolinium-enhanced spin-echo images and non-enhanced T1-weighted images. AJNR Am J Neuroradiol 16:69–77

    PubMed  Google Scholar 

  31. Petrella JR, Grossman RI, McGowan JC et al (1996) Multiple sclerosis lesions: relationship between MR enhancement pattern and magnetization transfer effect. AJNR Am J Neuroradiol 17:1041–1049

    PubMed  CAS  Google Scholar 

  32. Filippi M, Rocca MA, Rizzo G et al (1998) Magnetization transfer ratios in MS lesions enhancing after different doses of gadolinium. Neurology 50:1289–1293

    Article  PubMed  CAS  Google Scholar 

  33. Filippi M, Rocca MA, Comi G (1998) Magnetization transfer ratios of multiple sclerosis lesions with variable durations of enhancement. J Neurol Sci 159:162–165

    Article  PubMed  CAS  Google Scholar 

  34. Rocca MA, Mastronardo G, Rodegher M et al (1999) Long term changes of MT-derived measures from patients with relapsing-remitting and secondary-progressive multiple sclerosis. AJNR Am J Neuroadiol 20:821–827

    CAS  Google Scholar 

  35. Filippi M, Rocca MA, Martino G et al (1998) Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43:809–814

    Article  PubMed  CAS  Google Scholar 

  36. Gass A, Barker GJ, Kidd D et al (1994) Correlation of magnetization transfer ratio with disability in multiple sclerosis. Ann Neurol 36:62–67

    Article  PubMed  CAS  Google Scholar 

  37. van Waesberghe JHTM, van Walderveen MA, Castelijns JA et al (1998) Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization MR. AJNR Am J Neuroradiol 19:675–683

    PubMed  Google Scholar 

  38. Filippi M, Campi A, Dousset V et al (1995) A magnetization transfer imaging study of normal-appearing white matter in multiuple sclerosis. Neurology 45:478–482

    Article  PubMed  CAS  Google Scholar 

  39. Loevner LA, Grossman RI, Cohen JA et al (1995) Microscopic disease in normal-appearing white matter on conventional MR imaging in patients with multiple sclerosis: assessment with magnetization-transfer measurements. Radiology 196:511–515

    PubMed  CAS  Google Scholar 

  40. Filippi M, Rocca MA, Minicucci L et al (1999) Magnetization transfer imaging of patients with definite MS and negative conventional MRI. Neurology 52:845–848

    Article  PubMed  CAS  Google Scholar 

  41. van Buchem MA, McGowan JC, Kolson DL et al (1996) Quantitative volumetric magnetization transfer analysis in multiple sclerosis: estimation of macroscopic and microscopic disease burden. Magn Reson Med 36:632–636

    Article  PubMed  Google Scholar 

  42. Filippi M, Iannucci G, Tortorella C et al (1999) Comparison of MS clinical phenotypes using conventional and magnetization transfer MRI. Neurology 52:588–594

    Article  PubMed  CAS  Google Scholar 

  43. Rovaris M, Filippi M, Falautano M et al (1998) Relation between MR abnormalities and patterns of cognitive impairment in multiple sclerosis. Neurology 50:1601–1608

    Article  PubMed  CAS  Google Scholar 

  44. van Buchem MA, Grossman RI, Armstrong C et al (1998) Correlation of volumetric magnetization transfer imaging with clinical data in MS. Neurology 50:1609–1617

    Article  PubMed  Google Scholar 

  45. Iannucci G, Minicucci L, Rodegher M et al (1999) Correlations between clinical and MRI involvement in multiple sclerosis: assessment using T1, T2 and MT histograms. J Neurol Sci 171:121–129

    Article  PubMed  CAS  Google Scholar 

  46. Tortorella C, Viti B, Bozzali M et al (2000) A magnetization transfer histogram study of normal appearing brain tissue in multiple sclerosis. Neurology 54:186–193

    Article  PubMed  CAS  Google Scholar 

  47. Filippi M, Tortorella C, Rovaris M et al (2000) Changes in the normal appearing brain tissue and cognitive impairment in multiple sclerosis. J Neurol Neurosurg Psychiatry 68:157–161

    Article  PubMed  CAS  Google Scholar 

  48. Bozzali M, Rocca MA, Iannucci G et al (1999) Magnetization transfer histogram analysis of the cervical cord in patients wth multiple sclerosis. AJNR Am J Neuroradiol 20:1803–1808

    PubMed  CAS  Google Scholar 

  49. Filippi M, Bozzali M, Horsfield MA et al (2000) A conventional and magnetization transfer MRI study of the cervical cord in patients with multiple sclerosis. Neurology 54:207–213

    Article  PubMed  CAS  Google Scholar 

  50. Filippi M, Rocca MA, Moiola L et al (1999) MRI and MTI changes in the brain and cervical cord from patients with Devic’s neuromyelitis optica. Neurology 53:1705–1710

    Article  PubMed  CAS  Google Scholar 

  51. Wong KT, Grossman RI, Boorstein JM et al (1995) Magnetization transfer imaging of periventricular hyperintense white matter in the elderly. AJNR Am J Neuroadiol 16:253–258

    CAS  Google Scholar 

  52. Rocca MA, Colombo B, Pratesi A et al (2000) A magnetization transfer imaging study of the brain in patients with migraine. Neurology 54:507–509

    Article  PubMed  CAS  Google Scholar 

  53. Dousset V, Armand JP, Lacoste D et al (1997) Magnetization transfer study of HIV encephalitis and progressive multifocal leukoencephalopathy. AJNR Am J Neuroradiol 18:859–901

    Google Scholar 

  54. Gupta RK, Kathuria KM, Pradhan S (1999) Magnetization transfer MR imaging in CNS tubercolosis. AJNR Am J Neuroradiol 20:867–875

    PubMed  CAS  Google Scholar 

  55. Campi A, Filippi M, Gerevini S et al (1996) Multiple white matter lesions of the brain. Magnetization transfer ratios in systemic lupus erythematosus and multiple sclerosis. Int J Neuroradiol 2:134–140

    Google Scholar 

  56. Rovaris M, Viti B, Ciboddo G et al (1999) Brain involvement in systemic immune-mediated diseases: a magnetic resonance and magnetization transfer imaging study. J Neurol Neurosurg Psychiatry 68:170–177

    Article  Google Scholar 

  57. Tanabe JL, Ezekiel F, Jagust WJ et al (1999) Magnetization transfer ratio of white matter hyperintensities in subcortical ischemic vascular dementia. AJNR Am J Neuroradiol 20:839–844

    PubMed  CAS  Google Scholar 

  58. Kato Y, Matsumura K, Kinosada Y et al (1997) Detection of pyramidal tract lesions in amyotrophic lateral sclerosis with magnetization-transfer measurements. AJNR Am J Neuroradiol 18:1541–1547

    PubMed  CAS  Google Scholar 

  59. Silver NC, Barker GJ, MacManus DG et al (1996) Decreased magnetization transfer ratio due to demyelination: a case of central pontine myelinolysis. J Neurol Neurosurg Psychiatry 61:208–209

    Article  PubMed  CAS  Google Scholar 

  60. Iannucci G, Dichgans M, Rovaris M et al (2000) Correlations between clinical findings and magnetization transfer imaging metrics of tissue damage in individuals with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 32:643–648

    Article  Google Scholar 

  61. Bagley LJ, Grossman RI, Galetta SL et al (1999) Characterization of white matter lesions in multiple sclerosis and traumatic brain injury as revealed by magnetization transfer contour plots. AJNR Am J Neuroradiol 20:977–981

    PubMed  CAS  Google Scholar 

  62. Ernst T, Chang L, Witt M et al (1999) Progressive multifocal leukoencephalopathy and human immunodeficiency virus-associated white matter lesions in AIDS: magnetization transfer MR imaging. Radiology 210:539–543

    PubMed  CAS  Google Scholar 

  63. Woessner DE (1963) NMR spin-echo self-diffusion measurement on fluids undergoing restricted diffusion. J Phys Chem 67:1365–1367

    Article  CAS  Google Scholar 

  64. Le Bihan D, Turner R, Pekar J, Moonen CTW (1991) Diffusion and perfusion imaging by gradient sensitization: design, startegy and significance. J Magn Reson Imaging 1:7–8

    Article  PubMed  Google Scholar 

  65. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267

    Article  PubMed  CAS  Google Scholar 

  66. Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906

    Article  PubMed  CAS  Google Scholar 

  67. Moseley ME, Kucharczyk J, Mintorovitch J et al (1990) Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility enhanced MR imaging in cats. AJNR Am J Neuroradiol 14:423–429

    Google Scholar 

  68. Moseley ME, Cohen Y, Mintorovitch J et al (1990) Early detection of regional cerebral ischemia in cats: comparison of diffusion-and T2 weighted MRI and spectroscopy. Magn Reson Med 14:330–346

    Article  PubMed  CAS  Google Scholar 

  69. Warach S, Chien D, Li W et al (1992) Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42:1717–1723

    Article  PubMed  CAS  Google Scholar 

  70. Lutsep HL, Albers GW, DeCrespigny A et al (1997) Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischaemic stroke. Ann Neurol 41:574–580

    Article  PubMed  CAS  Google Scholar 

  71. Schlaug G, Siewert B, Benfield A et al (1997) Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology 49:113–119

    Article  PubMed  CAS  Google Scholar 

  72. Minematsu K, Li L, Sotak CH et al (1992) Reversible focal ischemic injury demonstrated by diffusion-weighted magnetic resonance imaging in rats. Stroke 23:1304–1311

    Article  PubMed  CAS  Google Scholar 

  73. Heide AC, Richards TL, Alvord EC Jr et al (1993) Diffusion imaging of experimental allergic encephalomyelitis. Magn Reson Med 4:478–484

    Article  Google Scholar 

  74. Verhoye MR, Gravenmade EJ, Raman ER et al (1996) In vivo noninvasive determination of abnormal water diffusion in the rat brain studied in an animal model for multiple sclerosis by diffusion-weighted NMR imaging. Magn Reson Imaging 14:521–532

    Article  PubMed  CAS  Google Scholar 

  75. Larsson HBW, Thomsen C, Frederiksen J et al (1992) In vivo magnetic resonance diffusion measurement in the brain of patients with multiple sclerosis. Magn Reson Imaging 10:7–12

    Article  PubMed  CAS  Google Scholar 

  76. Christiansen P, Gideon P, Thomsen C et al (1993) Increased water self-diffusion in chronic plaques and in apparently normal white matter in patients with multiple sclerosis. Acta Neurol Scand 87:195–199

    Article  PubMed  CAS  Google Scholar 

  77. Horsfield MA, Lai M, Webb SL et al (1996) Apparent diffusion coefficient in benign and in secondary progressive multiple sclerosis by nuclear magnetic resonance. Magn Reson Med 36:393–400

    Article  PubMed  CAS  Google Scholar 

  78. Droogan AG, Clark CA, Werring DJ et al (1999) Comparison of multiple sclerosis clinical subgroups using navigated spin echo diffusion-weighted imaging. Magn Reson Imaging 17:653–661

    Article  PubMed  CAS  Google Scholar 

  79. Werring DJ, Clark CA, Barker GJ et al (1999) Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 52:1626–1632

    Article  PubMed  CAS  Google Scholar 

  80. Cercignani M, Iannucci G, Rocca MA et al (2000) Pathologic damage in MS assessed by diffusion-weighted and magnetization transfer MRI. Neurology 54:1139–1144

    Article  PubMed  CAS  Google Scholar 

  81. Filippi M, Iannucci G, Cercignani M et al (2000) A quantitative study of water diffusion in MS lesions and NAWM using echo-planar imaging. Arch Neurol 57:1017–1021

    Article  PubMed  CAS  Google Scholar 

  82. Filippi M, Cercignani M, Inglese M et al (2001) Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 56:304–311

    Article  PubMed  CAS  Google Scholar 

  83. Cercignani M, Bozzali M, Iannucci G et al (2001) Magnetisation transfer ratio and mean diffusivity of normal-appearing white and gray matter from patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 70:311–317

    Article  PubMed  CAS  Google Scholar 

  84. Iwasawa T, Matoba H, Ogi A et al (1997) Diffusion-weighted imaging of the human optic nerve: a new approach to evaluate optic neuritis in multiple sclerosis. Magn Reson Med 38:484–491

    Article  PubMed  CAS  Google Scholar 

  85. Jones DK, Lythgoe D, Horsfield MA et al (1999) Characterization of white matter damage in ischaemic leukoaraiosis with diffusion tensor MRI. Stroke 30:393–397

    Article  PubMed  CAS  Google Scholar 

  86. Ellis CM, Simmons A, Jones DK et al (1999) Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology 53:1051–1058

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Italia

About this chapter

Cite this chapter

Filippi, M., De Stefano, N. (2004). Imaging for Tissue Characterization in Multiple Sclerosis and Other White Matter Diseases. In: Hommes, O.R., Comi, G. (eds) Early Indicators Early Treatments Neuroprotection in Multiple Sclerosis. Topics in Neuroscience. Springer, Milano. https://doi.org/10.1007/978-88-470-2117-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2117-4_8

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2171-6

  • Online ISBN: 978-88-470-2117-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics