Imaging for Tissue Characterization in Multiple Sclerosis and Other White Matter Diseases

  • M. Filippi
  • N. De Stefano
Part of the Topics in Neuroscience book series (TOPNEURO)


In white matter diseases (WMD), conventional magnetic resonance imaging (MRI) has proved to be sensitive for detecting lesions and their changes over time. However, conventional MRI is not able to characterize and quantify the tissue damage within and outside these lesions. Other quantitative MR techniques have the potential to overcome such limitation. Among these techniques, MR spectroscopy (MRS), magnetization transfer imaging (MTI), and diffusion-weighted imaging (DWI) have been most extensively applied to the assessment of WMD. The present review will summarize the major contributions of these three MR techniques to the understanding of the evolution of WMD, with a special focus on multiple sclerosis (MS). The application of MR techniques to the study of MS has indeed dramatically changed our understanding of how MS causes irreversible deficits and can serve as a useful model to be applied to other WMD.


Multiple Sclerosis Fractional Anisotropy Multiple Sclerosis Patient Multiple Sclerosis Lesion White Matter Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davie CA, Hawkins CP, Barker GJ et al (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117:49–58PubMedCrossRefGoogle Scholar
  2. 2.
    De Stefano N, Matthews PM, Antel JP et al (1995) Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 38:901–909PubMedCrossRefGoogle Scholar
  3. 3.
    Narayana PA, Doyle TI, Lai D, Wolinsky JS (1998) Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol 43:56–71PubMedCrossRefGoogle Scholar
  4. 4.
    Arnold DL, Matthews PM, Francis GS et al (1992) Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Ann Neurol 31:235–241PubMedCrossRefGoogle Scholar
  5. 5.
    De Stefano N, Matthews PM, Arnold DL (1995) Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med 34:721–727PubMedCrossRefGoogle Scholar
  6. 6.
    Falini A, Calabrese G, Filippi M et al (1998) Benign versus secondary progressive multiple sclerosis: the potential role of 1H MR spectroscopy in defining the nature of disability. AJNR Am J Neuroradiol 19:223–229PubMedGoogle Scholar
  7. 7.
    Arnold DL, Riess GT, Matthews PM et al (1994) Use of proton magnetic resonance spectroscopy for monitoring disease progression in multiple sclerosis. Ann Neurol 36:76–82PubMedCrossRefGoogle Scholar
  8. 8.
    Davie CA, Barker GJ, Webb S et al (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 118:1583–1592PubMedCrossRefGoogle Scholar
  9. 9.
    Matthews PM, Pioro E, Narayanan S et al (1996) Assessment of lesion pathology in multiple sclerosis using quantitative MRI morphometry and magnetic resonance spectroscopy. Brain 119:715–722PubMedCrossRefGoogle Scholar
  10. 10.
    De Stefano N, Matthews PM, Fu L et al (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121:1469–1477PubMedCrossRefGoogle Scholar
  11. 11.
    Filippi M, Tortorella C, Bozzali M (1999) Normal-appearing white matter changes in multiple sclerosis: the contribution of magnetic resonance techniques. Mult Scler 5:273–282PubMedGoogle Scholar
  12. 12.
    De Stefano N, Narayanan S, Matthews PM et al (1999) In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis. Brain 122:1933–1939PubMedCrossRefGoogle Scholar
  13. 13.
    Davie CA, Barker GJ, Thompson AJ et al (1997) 1H magnetic resonance spectroscopy of chronic cerebral white matter lesions and normal appearing white matter in multiple sclerosis. J Neurol Neurosurg Psychiatry 63:736–742PubMedCrossRefGoogle Scholar
  14. 14.
    Fu L, Matthews PM, De Stefano N et al (1998) Imaging of axonal damage of normal appearing white matter in multiple sclerosis. Brain 121:103–113PubMedCrossRefGoogle Scholar
  15. 15.
    De Stefano N, Federico A, Arnold DL (1997) Proton magnetic resonance spectroscopy in brain white matter disorders. Ital J Neurol Sci 18: 331–339PubMedCrossRefGoogle Scholar
  16. 16.
    Austin SJ, Connelly A, Gadian DG et al (1991) Localized 1H NMR spectroscopy in Canavan’s disease: a report of two cases. Magn Reson Med 19:439–445PubMedCrossRefGoogle Scholar
  17. 17.
    van der Knaap MS, Wevers RA, Struys EA et al (1995) Leukoencephalopathy with swelling and a discrepantly mild clinical course in eight children. Ann Neurol 37:324–334PubMedCrossRefGoogle Scholar
  18. 18.
    Ross BD, Bluml S, Cowan R et al (1997) In vivo magnetic resonance spectroscopy of human brain: the biophysical basis of dementia. Biophys Chem 68:161–172PubMedCrossRefGoogle Scholar
  19. 19.
    Bruhn H, Kruse B, Korenke GC et al (1992) Proton NMR spectroscopy of cerebral metabolic alterations in infantile peroxisomal disorders. J Comput Assist Tomogr 16:335–344PubMedCrossRefGoogle Scholar
  20. 20.
    Johannik K, Van Hecke P, Francois B et al (1994) Localized brain proton NMR spectroscopy in young adult phenylketonuria patients. Magn Reson Med 31:53–57PubMedCrossRefGoogle Scholar
  21. 21.
    Tzika AA, Ball WS Jr, Vigneron DB et al (1993) Childhood adrenoleukodystrophy: assessment with proton MR spectroscopy. Radiology 189:467–480PubMedGoogle Scholar
  22. 22.
    Kruse B, Hanefeld F, Christen HJ et al (1993) Alterations of brain metabolites in metachromatic leukodystrophy as detected by localized proton magnetic resonance spectroscopy in vivo. J Neurol 241:68–74PubMedCrossRefGoogle Scholar
  23. 23.
    van der Knaap MS, van der Grond J, Luyten PR et al (1992)1H and31P magnetic resonance spectroscopy of the brain in degenerative cerebral disorders. Ann Neurol 31:202–211PubMedCrossRefGoogle Scholar
  24. 24.
    Kruse B, Barker PB, van Zijl PC et al (1994) Multislice proton magnetic resonance spectroscopic imaging in X- linked adrenoleukodystrophy. Ann Neurol 36:595–608PubMedCrossRefGoogle Scholar
  25. 25.
    Filippi M, Grossman RI, Comi G (eds) (1999) Magnetization transfer in multiple sclerosis. Neurology 53 [Suppl 3]Google Scholar
  26. 26.
    van Waesberghe JH, Kamphorst W, De Groot CJ et al (1999) Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol 46:747–754PubMedCrossRefGoogle Scholar
  27. 27.
    Dousset V, Dousset V, Grossman RI, Ramer KN et al (1992) Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology 182:483–491PubMedGoogle Scholar
  28. 28.
    Lai HM, Davie CA, Gass A et al (1997) Serial magnetization transfer ratios in gadolinium-enhancing lesions in multiple sclerosis. J Neurol 244:308–311PubMedCrossRefGoogle Scholar
  29. 29.
    Campi A, Filippi M, Comi G et al (1996) Magnetization transfer ratios of contrast-enhancing and nonenhancing lesions in multiple sclerosis. Neuroradiology 38:115–119PubMedCrossRefGoogle Scholar
  30. 30.
    Hiehle JF, Grossman RI, Ramer NK et al (1995) Magnetization transfer effects in MR-detected multiple sclerosis lesions: comparison with gadolinium-enhanced spin-echo images and non-enhanced T1-weighted images. AJNR Am J Neuroradiol 16:69–77PubMedGoogle Scholar
  31. 31.
    Petrella JR, Grossman RI, McGowan JC et al (1996) Multiple sclerosis lesions: relationship between MR enhancement pattern and magnetization transfer effect. AJNR Am J Neuroradiol 17:1041–1049PubMedGoogle Scholar
  32. 32.
    Filippi M, Rocca MA, Rizzo G et al (1998) Magnetization transfer ratios in MS lesions enhancing after different doses of gadolinium. Neurology 50:1289–1293PubMedCrossRefGoogle Scholar
  33. 33.
    Filippi M, Rocca MA, Comi G (1998) Magnetization transfer ratios of multiple sclerosis lesions with variable durations of enhancement. J Neurol Sci 159:162–165PubMedCrossRefGoogle Scholar
  34. 34.
    Rocca MA, Mastronardo G, Rodegher M et al (1999) Long term changes of MT-derived measures from patients with relapsing-remitting and secondary-progressive multiple sclerosis. AJNR Am J Neuroadiol 20:821–827Google Scholar
  35. 35.
    Filippi M, Rocca MA, Martino G et al (1998) Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43:809–814PubMedCrossRefGoogle Scholar
  36. 36.
    Gass A, Barker GJ, Kidd D et al (1994) Correlation of magnetization transfer ratio with disability in multiple sclerosis. Ann Neurol 36:62–67PubMedCrossRefGoogle Scholar
  37. 37.
    van Waesberghe JHTM, van Walderveen MA, Castelijns JA et al (1998) Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization MR. AJNR Am J Neuroradiol 19:675–683PubMedGoogle Scholar
  38. 38.
    Filippi M, Campi A, Dousset V et al (1995) A magnetization transfer imaging study of normal-appearing white matter in multiuple sclerosis. Neurology 45:478–482PubMedCrossRefGoogle Scholar
  39. 39.
    Loevner LA, Grossman RI, Cohen JA et al (1995) Microscopic disease in normal-appearing white matter on conventional MR imaging in patients with multiple sclerosis: assessment with magnetization-transfer measurements. Radiology 196:511–515PubMedGoogle Scholar
  40. 40.
    Filippi M, Rocca MA, Minicucci L et al (1999) Magnetization transfer imaging of patients with definite MS and negative conventional MRI. Neurology 52:845–848PubMedCrossRefGoogle Scholar
  41. 41.
    van Buchem MA, McGowan JC, Kolson DL et al (1996) Quantitative volumetric magnetization transfer analysis in multiple sclerosis: estimation of macroscopic and microscopic disease burden. Magn Reson Med 36:632–636PubMedCrossRefGoogle Scholar
  42. 42.
    Filippi M, Iannucci G, Tortorella C et al (1999) Comparison of MS clinical phenotypes using conventional and magnetization transfer MRI. Neurology 52:588–594PubMedCrossRefGoogle Scholar
  43. 43.
    Rovaris M, Filippi M, Falautano M et al (1998) Relation between MR abnormalities and patterns of cognitive impairment in multiple sclerosis. Neurology 50:1601–1608PubMedCrossRefGoogle Scholar
  44. 44.
    van Buchem MA, Grossman RI, Armstrong C et al (1998) Correlation of volumetric magnetization transfer imaging with clinical data in MS. Neurology 50:1609–1617PubMedCrossRefGoogle Scholar
  45. 45.
    Iannucci G, Minicucci L, Rodegher M et al (1999) Correlations between clinical and MRI involvement in multiple sclerosis: assessment using T1, T2 and MT histograms. J Neurol Sci 171:121–129PubMedCrossRefGoogle Scholar
  46. 46.
    Tortorella C, Viti B, Bozzali M et al (2000) A magnetization transfer histogram study of normal appearing brain tissue in multiple sclerosis. Neurology 54:186–193PubMedCrossRefGoogle Scholar
  47. 47.
    Filippi M, Tortorella C, Rovaris M et al (2000) Changes in the normal appearing brain tissue and cognitive impairment in multiple sclerosis. J Neurol Neurosurg Psychiatry 68:157–161PubMedCrossRefGoogle Scholar
  48. 48.
    Bozzali M, Rocca MA, Iannucci G et al (1999) Magnetization transfer histogram analysis of the cervical cord in patients wth multiple sclerosis. AJNR Am J Neuroradiol 20:1803–1808PubMedGoogle Scholar
  49. 49.
    Filippi M, Bozzali M, Horsfield MA et al (2000) A conventional and magnetization transfer MRI study of the cervical cord in patients with multiple sclerosis. Neurology 54:207–213PubMedCrossRefGoogle Scholar
  50. 50.
    Filippi M, Rocca MA, Moiola L et al (1999) MRI and MTI changes in the brain and cervical cord from patients with Devic’s neuromyelitis optica. Neurology 53:1705–1710PubMedCrossRefGoogle Scholar
  51. 51.
    Wong KT, Grossman RI, Boorstein JM et al (1995) Magnetization transfer imaging of periventricular hyperintense white matter in the elderly. AJNR Am J Neuroadiol 16:253–258Google Scholar
  52. 52.
    Rocca MA, Colombo B, Pratesi A et al (2000) A magnetization transfer imaging study of the brain in patients with migraine. Neurology 54:507–509PubMedCrossRefGoogle Scholar
  53. 53.
    Dousset V, Armand JP, Lacoste D et al (1997) Magnetization transfer study of HIV encephalitis and progressive multifocal leukoencephalopathy. AJNR Am J Neuroradiol 18:859–901Google Scholar
  54. 54.
    Gupta RK, Kathuria KM, Pradhan S (1999) Magnetization transfer MR imaging in CNS tubercolosis. AJNR Am J Neuroradiol 20:867–875PubMedGoogle Scholar
  55. 55.
    Campi A, Filippi M, Gerevini S et al (1996) Multiple white matter lesions of the brain. Magnetization transfer ratios in systemic lupus erythematosus and multiple sclerosis. Int J Neuroradiol 2:134–140Google Scholar
  56. 56.
    Rovaris M, Viti B, Ciboddo G et al (1999) Brain involvement in systemic immune-mediated diseases: a magnetic resonance and magnetization transfer imaging study. J Neurol Neurosurg Psychiatry 68:170–177CrossRefGoogle Scholar
  57. 57.
    Tanabe JL, Ezekiel F, Jagust WJ et al (1999) Magnetization transfer ratio of white matter hyperintensities in subcortical ischemic vascular dementia. AJNR Am J Neuroradiol 20:839–844PubMedGoogle Scholar
  58. 58.
    Kato Y, Matsumura K, Kinosada Y et al (1997) Detection of pyramidal tract lesions in amyotrophic lateral sclerosis with magnetization-transfer measurements. AJNR Am J Neuroradiol 18:1541–1547PubMedGoogle Scholar
  59. 59.
    Silver NC, Barker GJ, MacManus DG et al (1996) Decreased magnetization transfer ratio due to demyelination: a case of central pontine myelinolysis. J Neurol Neurosurg Psychiatry 61:208–209PubMedCrossRefGoogle Scholar
  60. 60.
    Iannucci G, Dichgans M, Rovaris M et al (2000) Correlations between clinical findings and magnetization transfer imaging metrics of tissue damage in individuals with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 32:643–648CrossRefGoogle Scholar
  61. 61.
    Bagley LJ, Grossman RI, Galetta SL et al (1999) Characterization of white matter lesions in multiple sclerosis and traumatic brain injury as revealed by magnetization transfer contour plots. AJNR Am J Neuroradiol 20:977–981PubMedGoogle Scholar
  62. 62.
    Ernst T, Chang L, Witt M et al (1999) Progressive multifocal leukoencephalopathy and human immunodeficiency virus-associated white matter lesions in AIDS: magnetization transfer MR imaging. Radiology 210:539–543PubMedGoogle Scholar
  63. 63.
    Woessner DE (1963) NMR spin-echo self-diffusion measurement on fluids undergoing restricted diffusion. J Phys Chem 67:1365–1367CrossRefGoogle Scholar
  64. 64.
    Le Bihan D, Turner R, Pekar J, Moonen CTW (1991) Diffusion and perfusion imaging by gradient sensitization: design, startegy and significance. J Magn Reson Imaging 1:7–8PubMedCrossRefGoogle Scholar
  65. 65.
    Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267PubMedCrossRefGoogle Scholar
  66. 66.
    Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906PubMedCrossRefGoogle Scholar
  67. 67.
    Moseley ME, Kucharczyk J, Mintorovitch J et al (1990) Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility enhanced MR imaging in cats. AJNR Am J Neuroradiol 14:423–429Google Scholar
  68. 68.
    Moseley ME, Cohen Y, Mintorovitch J et al (1990) Early detection of regional cerebral ischemia in cats: comparison of diffusion-and T2 weighted MRI and spectroscopy. Magn Reson Med 14:330–346PubMedCrossRefGoogle Scholar
  69. 69.
    Warach S, Chien D, Li W et al (1992) Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42:1717–1723PubMedCrossRefGoogle Scholar
  70. 70.
    Lutsep HL, Albers GW, DeCrespigny A et al (1997) Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischaemic stroke. Ann Neurol 41:574–580PubMedCrossRefGoogle Scholar
  71. 71.
    Schlaug G, Siewert B, Benfield A et al (1997) Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology 49:113–119PubMedCrossRefGoogle Scholar
  72. 72.
    Minematsu K, Li L, Sotak CH et al (1992) Reversible focal ischemic injury demonstrated by diffusion-weighted magnetic resonance imaging in rats. Stroke 23:1304–1311PubMedCrossRefGoogle Scholar
  73. 73.
    Heide AC, Richards TL, Alvord EC Jr et al (1993) Diffusion imaging of experimental allergic encephalomyelitis. Magn Reson Med 4:478–484CrossRefGoogle Scholar
  74. 74.
    Verhoye MR, Gravenmade EJ, Raman ER et al (1996) In vivo noninvasive determination of abnormal water diffusion in the rat brain studied in an animal model for multiple sclerosis by diffusion-weighted NMR imaging. Magn Reson Imaging 14:521–532PubMedCrossRefGoogle Scholar
  75. 75.
    Larsson HBW, Thomsen C, Frederiksen J et al (1992) In vivo magnetic resonance diffusion measurement in the brain of patients with multiple sclerosis. Magn Reson Imaging 10:7–12PubMedCrossRefGoogle Scholar
  76. 76.
    Christiansen P, Gideon P, Thomsen C et al (1993) Increased water self-diffusion in chronic plaques and in apparently normal white matter in patients with multiple sclerosis. Acta Neurol Scand 87:195–199PubMedCrossRefGoogle Scholar
  77. 77.
    Horsfield MA, Lai M, Webb SL et al (1996) Apparent diffusion coefficient in benign and in secondary progressive multiple sclerosis by nuclear magnetic resonance. Magn Reson Med 36:393–400PubMedCrossRefGoogle Scholar
  78. 78.
    Droogan AG, Clark CA, Werring DJ et al (1999) Comparison of multiple sclerosis clinical subgroups using navigated spin echo diffusion-weighted imaging. Magn Reson Imaging 17:653–661PubMedCrossRefGoogle Scholar
  79. 79.
    Werring DJ, Clark CA, Barker GJ et al (1999) Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 52:1626–1632PubMedCrossRefGoogle Scholar
  80. 80.
    Cercignani M, Iannucci G, Rocca MA et al (2000) Pathologic damage in MS assessed by diffusion-weighted and magnetization transfer MRI. Neurology 54:1139–1144PubMedCrossRefGoogle Scholar
  81. 81.
    Filippi M, Iannucci G, Cercignani M et al (2000) A quantitative study of water diffusion in MS lesions and NAWM using echo-planar imaging. Arch Neurol 57:1017–1021PubMedCrossRefGoogle Scholar
  82. 82.
    Filippi M, Cercignani M, Inglese M et al (2001) Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 56:304–311PubMedCrossRefGoogle Scholar
  83. 83.
    Cercignani M, Bozzali M, Iannucci G et al (2001) Magnetisation transfer ratio and mean diffusivity of normal-appearing white and gray matter from patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 70:311–317PubMedCrossRefGoogle Scholar
  84. 84.
    Iwasawa T, Matoba H, Ogi A et al (1997) Diffusion-weighted imaging of the human optic nerve: a new approach to evaluate optic neuritis in multiple sclerosis. Magn Reson Med 38:484–491PubMedCrossRefGoogle Scholar
  85. 85.
    Jones DK, Lythgoe D, Horsfield MA et al (1999) Characterization of white matter damage in ischaemic leukoaraiosis with diffusion tensor MRI. Stroke 30:393–397PubMedCrossRefGoogle Scholar
  86. 86.
    Ellis CM, Simmons A, Jones DK et al (1999) Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology 53:1051–1058PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2004

Authors and Affiliations

  • M. Filippi
  • N. De Stefano

There are no affiliations available

Personalised recommendations