Early Treatment of Progression in Multiple Sclerosis

  • R. E. Gonsette
Part of the Topics in Neuroscience book series (TOPNEURO)


Progression is a clinical concept linked to a gradual, irreversible increase in disability that correlates with the transition from the relapsing-remitting (RR) to the progressive stages. It is becoming increasingly clear that progressive multiple sclerosis (MS) is associated with axonal loss and that axonal damage occurs early during RRMS. Disease progression thus develops well in advance of clinical progression and remains subclinical because, due to compensatory mechanisms, impairment does not interfere with daily living activities at that stage.


Nitric Oxide Multiple Sclerosis Uric Acid Experimental Autoimmune Encephalomyelitis Glatiramer Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raine CS (1994) The Dale E. McFarlin memorial lecture: the immunology of the multiple sclerosis lesion. Ann Neurol 36:S61–S72PubMedCrossRefGoogle Scholar
  2. 2.
    Trapp BD, Ransohoff RM, Fisher E, Rudick RA (1999) Neurodegeneration in multiple sclerosis: relationship to neurological disability. Neuroscientist 5:48–57CrossRefGoogle Scholar
  3. 3.
    Smith KJ, Kapoor R, Felts PA (1999) Demyelination: the role of reactive oxygen and nitrogen species. Brain Pathol 9:69–92PubMedCrossRefGoogle Scholar
  4. 4.
    Redford EJ, Kapoor R, Smith KJ (1997) Nitric oxide donors reversibly block axonal conduction: demyelinated axons are especially susceptible. Brain 120:2149–2157PubMedCrossRefGoogle Scholar
  5. 5.
    Kapoor R, Davies M, Smith KJ (1999) Temporary axonal conduction block and axonal loss in inflammatory neurological disease. A potential role for nitric oxide? Ann NY Acad Sci 893:304–308PubMedCrossRefGoogle Scholar
  6. 6.
    Kim YS, Kim SU (1991) Oligodendroglial cell death induced by oxygen radicals and its protection by catalase. J Neurosci Res 29:100–106PubMedCrossRefGoogle Scholar
  7. 7.
    Merrill JE et al (1993) Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol 151:2132–2141PubMedGoogle Scholar
  8. 8.
    Mitrovic B et al (1995) Nitric oxide induces necrotic but not apoptotic cell death in oligodendrocytes. Neuroscience 65:531–539PubMedCrossRefGoogle Scholar
  9. 9.
    Mickel HS (1975) Multiple sclerosis: a new hypothesis. Perspect Biol Med 18:363–374PubMedGoogle Scholar
  10. 10.
    Reif DW, Simmons RD (1990) Nitric oxide mediates iron release from ferritin. Arch Biochem Biophys 283:537–541PubMedCrossRefGoogle Scholar
  11. 11.
    Beckman JS (1994) Peroxynitrite versus hydroxyl radical: the role of nitric oxide in superoxide-dependent cerebral injury. Ann NY Acad Sci 738:69–75PubMedCrossRefGoogle Scholar
  12. 12.
    Le Vine SM (1992) The role of reactive oxygen species in the pathogenesis of multiple sclerosis. Med Hypotheses 39:271–274CrossRefGoogle Scholar
  13. 13.
    Kolb H, Kolb-Bachofen V (1992) Nitric oxide: a pathogenetic factor in autoimmunity. Immunol Today 13:157–159PubMedCrossRefGoogle Scholar
  14. 14.
    Brosnan CF et al (1994) Reactive nitrogen intermediates in human neuropathology: an overview. Dev Neurosci 16:152–161PubMedCrossRefGoogle Scholar
  15. 15.
    Molina JA, Jimenez-Jimenez FJ, Orti-Pareja M, Navarro JA (1998) The role of nitric oxide in neurodegeneration. Potential for pharmacological intervention. Drugs Aging 12:251–259PubMedCrossRefGoogle Scholar
  16. 16.
    Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 271:C1424–C1437PubMedGoogle Scholar
  17. 17.
    Lorsbach RB et al (1993) Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. J Biol Chem 268:1908–1913PubMedGoogle Scholar
  18. 18.
    Mazella GL et al (1983) Blood cells glutathione peroxidase activity and selenium in multiple sclerosis. Eur Neurol 22:442–446CrossRefGoogle Scholar
  19. 19.
    Jensen GE, Clausen J (1986) Glutathione peroxidase activity, associated enzymes and substrates in blood cells from patients with multiple sclerosis — effects of antioxidant supplementation. Acta Pharmacol Toxicol 59 [Suppl 71:450–453Google Scholar
  20. 20.
    Hammann KP, Hopf HC (1986) Monocytes constitute the only peripheral blood cell population showing an increased burst activity in multiple sclerosis patients. Int Arch Allergy Appl Immun 81:230–234CrossRefGoogle Scholar
  21. 21.
    Fisher M et al (1988) Monocyte and polymorphonuclear leukocyte toxic oxygen metabolite production in multiple sclerosis. Inflammation 12:123–131PubMedCrossRefGoogle Scholar
  22. 22.
    Korpela H et al (1989) Serum selenium concentration, glutathione peroxidase activity and lipid peroxides in a co-twin control study on multiple sclerosis. J Neurol Sci 91:79–84PubMedCrossRefGoogle Scholar
  23. 23.
    Glabinski A, Tawsek NS, Bartosz G (1993) Increased generation of superoxide radicals in the blood of MS patients. Acta Neurol Scand 88:174–177PubMedCrossRefGoogle Scholar
  24. 24.
    Zabaleta ME, Bianco NE, De Sanctis JB (1998) Serum nitric oxide products in patients with multiple sclerosis: relationship with clinical activity. Med Sci Res 26:373–374Google Scholar
  25. 25.
    Giovannoni G et al (1997) Raised serum nitrate and nitrite levels in patients with multiple sclerosis. J Neurol Sci 145:77–81PubMedCrossRefGoogle Scholar
  26. 26.
    Giovannoni G (1998) Cerebrospinal fluid and serum nitric oxide metabolites in patients with multiple sclerosis. Mult Scler 4:27–30PubMedCrossRefGoogle Scholar
  27. 27.
    Brundin L et al (1998) Nitric oxide production in multiple sclerosis — an indicator of active disease. Mult Scler 4:327CrossRefGoogle Scholar
  28. 28.
    Zabaleta ME, Bianco NE, De Sanctis JB (1998) Serum nitrotyrosine levels in patients with multiple sclerosis: relationship with clinical activity. Med Sci Res 26:407–408Google Scholar
  29. 29.
    Boullerne AI, Petry KG, Meynard M, Geffard M (1995) Indirect evidence for nitric oxide involvement in multiple sclerosis by characterization of circulating antibodies directed against conjugated S-nitrosocysteine. J Neuroimmunol 60:117–124PubMedCrossRefGoogle Scholar
  30. 30.
    Karg E et al (1999) Nonenzymatic antioxidants of blood in multiple sclerosis. J Neurol 246:533–539PubMedCrossRefGoogle Scholar
  31. 31.
    Lucas M et al (1999) The oxidation-reduction state of serum proteins in multiple sclerosis patients: effect of interferon beta-lb. Neurochem Int 34:287–289PubMedCrossRefGoogle Scholar
  32. 32.
    Hunter MIS, Nlemadim BC, Davidson DLW (1985) Lipid peroxidation products and antioxidant proteins in plasma and cerebrospinal fluid from multiple sclerosis patients. Neurochem Res 10:1645–1652PubMedCrossRefGoogle Scholar
  33. 33.
    Johnson AW et al (1995) Evidence for increased nitric oxide production in multiple sclerosis. J Neurol Neurosurg Psychiatry 58:107PubMedCrossRefGoogle Scholar
  34. 34.
    Yamashita T et al (1997) Changes in nitrite and nitrate (NO2-/NO3-) levels in cerebrospinal fluid of patients with multiple sclerosis. J Neurol Sci 153:32–34PubMedCrossRefGoogle Scholar
  35. 35.
    Svenningsson A, Petersson AS, Andersen O, Hansson GK (1999) Nitric oxide metabolites in CSF of patients with MS are related to clinical disease course. Neurology 53:1880–1882PubMedCrossRefGoogle Scholar
  36. 36.
    De Bustos F et al (1999) Cerebrospinal fluid nitrate levels in patients with multiple sclerosis. Eur Neurol 41:44–47PubMedCrossRefGoogle Scholar
  37. 37.
    Drulovic J et al (2001) Raised cerebrospinal fluid nitrite and nitrate levels in patients with multiple sclerosis: no correlation with disease activity. Mult Scler 7:19–22PubMedCrossRefGoogle Scholar
  38. 38.
    Greco A et al (1999) Cerebrospinal fluid isoprostane shows oxidative stress in patients with multiple sclerosis. Neurology 53:1876–1879PubMedCrossRefGoogle Scholar
  39. 39.
    Langemann H, Kabiersch A, Newcombe J (1992) Measurement of low-molecularweight antioxidants, uric acid, tyrosine and tryptophan in plaques and white matter from patients with multiple sclerosis. Eur Neurol 32:248–252PubMedCrossRefGoogle Scholar
  40. 40.
    Bö L et al (1994) Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol 36:778–786PubMedCrossRefGoogle Scholar
  41. 41.
    De Groot CIA et al (1997) Immunocytochemical characterization of the expression of inducible and constitutive isoforms of nitric oxide synthase in demyelinating multiple sclerosis lesions. J Neuropathol Exp Neurol 56:10–20PubMedCrossRefGoogle Scholar
  42. 42.
    Oleszak EL et al (1998) Inducible nitric oxide synthase and nitrotyrosine are found in monocytes/macrophages and/or astrocytes in acute, but not in chronic, multiple sclerosis. Clin Diagn Lab Immunol 5:438–445PubMedGoogle Scholar
  43. 43.
    Cross AH et al (1998) Peroxynitrite formation within the central nervous system in active multiple sclerosis. J Neuroimmunol 88:45–56PubMedCrossRefGoogle Scholar
  44. 44.
    Vladimirova O et al (1998) Oxidative damage to DNA in plaques of MS brains. Mult Scler 4:413–418PubMedGoogle Scholar
  45. 45.
    Le Vine SM, Wetzel DL (1998) Chemical analysis of multiple sclerosis lesions by FT-IR microspectroscopy. Free Radic Biol Med 25:33–41CrossRefGoogle Scholar
  46. 46.
    Bagasra O et al (1995) Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc Natl Acad Sci U S A 92:12041–12045PubMedCrossRefGoogle Scholar
  47. 47.
    Van der Veen RC, Hinton DC, Incardonna F, Hofman FM (1997) Extensive peroxynitrite activity during progressive stages of central nervous system inflammation. J Neuroimmunol 77:1–7PubMedCrossRefGoogle Scholar
  48. 48.
    Tran EH, Hardin-Pouzet H, Verge G, Owens T (1997) Astrocytes and microglia express inducible nitric oxide synthase in mice with experimental allergic encephalomyelitis. J Neuroimmunol 74:121–129PubMedCrossRefGoogle Scholar
  49. 49.
    Bowern N, Ramshaw IA, Clark IA, Doherty PC (1984) Inhibition of autoimmune neuropathological process by treatment with an iron-chelating agent. J Exp Med 160:1532–1543PubMedCrossRefGoogle Scholar
  50. 50.
    Malfroy B et al (1997) Prevention and suppression of autoimmune encephalomyelitis by EUK-8, a synthetic catalytic scavenger of oxygen-reactive metabolites. Cell Immunol 177:62–68PubMedCrossRefGoogle Scholar
  51. 51.
    Cross AH et al (1994) Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice. J Clin Invest 93:2684–2690PubMedCrossRefGoogle Scholar
  52. 52.
    Brenner T et al (1997) Inhibition of nitric oxide synthase for treatment of experimental autoimmune encephalomyelitis. J Immunol 158:2940–2946PubMedGoogle Scholar
  53. 53.
    Zielasek J et al (1995) Administration of nitric oxide synthase inhibitors in experimental autoimmune neuritis and experimental autoimmune encephalomyelitis. J Neuroimmunol 58:81–88PubMedCrossRefGoogle Scholar
  54. 54.
    Hooper DC et al (1997) Prevention of experimental allergic encephalomyelitis by targeting nitric oxide and peroxynitrite: implications for the treatment of multiple sclerosis. Proc Natl Acad Sci U S A 94:2528–2533PubMedCrossRefGoogle Scholar
  55. 55.
    Hooper DC et al (1998) Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci U S A 95:675–680PubMedCrossRefGoogle Scholar
  56. 56.
    Norstrand IF, Craellus W (1989) A trial of deferoxamine (Desferal) in the treatment of multiple sclerosis. A pilot study. Clin Trials J 26:365–369Google Scholar
  57. 57.
    Gordon J, Ginsberg T (1988) Isoprinosine and NPT 15392: hypoxanthine-containing immunomodulators. In: Bray MA (ed) Handbook of experimental pharmacology, vol 85. Springer, Berlin Heidelberg New York, pp 535–553Google Scholar
  58. 58.
    Mazzarello P et al (1982) Isoprinosine in multiple sclerosis treatment: a preliminary study. Arch Suisses Neurol Neurochir Psychiatry 131:175–179Google Scholar
  59. 59.
    Caltagirone C, Carlesimo A (1986) Methisoprinol in the treatment of multiple sclerosis. A pilot study. Acta Neurol Scand 74:293–296PubMedCrossRefGoogle Scholar
  60. 60.
    Pompidou A et al (1986) Clinical and immunological improvement of remittent multiple sclerosis after treatment with isoprinosine. A randomized pilot study. Presse Med 15:930–931PubMedGoogle Scholar
  61. 61.
    Pompidou A et al (1987) Immunosuppressive effects of isoprinosine in man: a comparison to chlorambucil effects in multiple sclerosis. Cancer Detect Prey [Suppl] 1:377–383Google Scholar
  62. 62.
    Confavreux C et al (1986) Treatment of multiple sclerosis with isoprinosine. 52 observations. Presse Med 15:2256–2257PubMedGoogle Scholar
  63. 63.
    Maciejek Z (1989) Changes in visual evoked potentials in patients with multiple sclerosis treated with isoprinosine and amantadine. Arch Immunol Ther Exp 37:621–628Google Scholar
  64. 64.
    Milligan NM, Miller DH, Compston DAS (1994) A placebo-controlled trial of isoprinosine in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 57:164–168PubMedCrossRefGoogle Scholar
  65. 65.
    Gonsette RE et al (1993) The European Isoprinosine Study in Multiple Sclerosis (abstract). ECTRIMS AISM Congress Florence, 31 October to 2 November, p 50Google Scholar
  66. 66.
    Alderman MH, Cohen H, Madhavan S, Kivlighn S (1999) Serum uric acid and cardiovascular events in successfully treated hypertensive patients. Hypertension 34:144–150PubMedCrossRefGoogle Scholar
  67. 67.
    Wicket WH et al (1984) A double-blinded study of medium to long-term safety of inosiplex in the treatment of recurrent genital herpes virus disease. Curr Ther Res 35:177–183Google Scholar
  68. 68.
    Drulovic J et al (2001) Uric acid levels in sera from patients with multiple sclerosis. J Neurol 248:121–126PubMedCrossRefGoogle Scholar
  69. 69.
    Zazgornik J et al (1996) Serum uric acid level in type 1 and type 2 diabetic patients. Wien Med Wochenschr 146:102–104PubMedGoogle Scholar
  70. 70.
    Constantinescu CS, Freitag P, Kappos L (2000) Increase of serum levels of uric acid, an endogenous antioxidant, under treatment with glatiramer acetate for multiple sclerosis. Mult Scler 6:378–381PubMedGoogle Scholar
  71. 71.
    Van der Veen RC, Roberts LJ (1999) Contrasting roles for nitric oxide and peroxynitrite in the peroxidation of myelin lipids. J Neuroimmunol 95:1–7PubMedCrossRefGoogle Scholar
  72. 72.
    Whiteman M, Halliwell B (1996) Protection against peroxynitrite-dependent tyrosine nitration and alpha 1-antiproteinase inactivation by ascorbic acid. A comparison with other biological antioxidants. Free Radic Res 25:275–283PubMedCrossRefGoogle Scholar
  73. 73.
    Fici GJ, Althaus JS, Hall ED, Von Voigtlander PF (1996) Protective effects of tirilazad mesylate in a cellular model of peroxynitrite toxicity. Res Commun Mol Pathol Pharmacol 91:357–371PubMedGoogle Scholar
  74. 74.
    Whiteman M, Halliwell B (1997) Prevention of peroxynitrite-dependent tyrosine nitration and inactivation of alphal-antiproteinase by antibiotics. Free Radic Res 26:49–56PubMedCrossRefGoogle Scholar
  75. 75.
    Aruoma OI, Whiteman M, England TG, Halliwell B (1997) Antioxidant action of ergothioneine: assessment of its ability to scavenge peroxynitrite. Biochem Biophys Res Commun 231:389–391PubMedCrossRefGoogle Scholar
  76. 76.
    Fici GJ, Althaus JS, Von Voigtlander PF (1997) Effects of lazaroids and a peroxynitrite scavenger in a cell model of peroxynitrite toxicity. Free Radic Biol Med 22:223–228PubMedCrossRefGoogle Scholar
  77. 77.
    Sandoval M et al (1997) Peroxynitrite-induced apoptosis in T84 and RAW 264.7 cells: attenuation by L-ascorbic acid. Free Radic Biol Med 22:489–495PubMedCrossRefGoogle Scholar
  78. 78.
    Gilad E et al (1997) Melatonin is a scavenger of peroxynitrite. Life Sci 60:169–174CrossRefGoogle Scholar
  79. 79.
    Sies H et al (1998) Protection against peroxynitrite by selenoproteins. Z Naturforsch [C] 53:228–232Google Scholar
  80. 80.
    Masumoto H, Kissner R, Koppenol WH, Sies H (1996) Kinetic study of the reaction of ebselen with peroxynitrite. FEBS Lett 398:179–182PubMedCrossRefGoogle Scholar
  81. 81.
    Ducrocq C, Blanchard B, Pignatelli B, Ohshima H (1998) Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med 55:392–403Google Scholar
  82. 82.
    Briviba K et al (1998) Protection by organotellurium compounds against peroxynitrite-mediated oxidation and nitration reactions. Biochem Pharmacol 55:817–823PubMedCrossRefGoogle Scholar
  83. 83.
    Fontana M, Pecci L, Macone A, Cavallini D (1998) Antioxidant properties of the decarboxylated dimer of aminoethylcysteine ketimine: assessment of its ability to scavenge peroxynitrite. Free Radic Res 29:435–440PubMedCrossRefGoogle Scholar
  84. 84.
    Cuzzocrea S et al (1998) Antiinflammatory effects of mercaptoethylguanidine, a combined inhibitor of nitric oxide synthase and peroxynitrite scavenger, in carrageenan-induced models of inflammation. Free Radic Biol Med 24:450–459PubMedCrossRefGoogle Scholar
  85. 85.
    Zingarelli B, Cuzzocrea S, Szab’o C, Salzman AL (1998) Mercaptoethylguanidine, a combined inhibitor of nitric oxide synthase and peroxynitrite scavenger, reduces trinitrobenzene sulfonic acid-induced colonic damage in rats. J Pharmacol Exp Ther 287:1048–1055PubMedGoogle Scholar
  86. 86.
    Crow JP (1999) Manganese and iron porphyrins catalyze peroxynitrite decomposition and simultaneously increase nitration and oxidant yield: implications for their use as peroxynitrite scavengers in vivo. Arch Biochem Biophys 371:41–52PubMedCrossRefGoogle Scholar
  87. 87.
    Misko TP et al (1998) Characterization of the cytoprotective action of peroxynitrite decomposition catalysts. J Biol Chem 273:15646–15653PubMedCrossRefGoogle Scholar
  88. 88.
    Pannala AS et al (1998) Inhibition of peroxynitrite dependent tyrosine nitration by hydroxycinnamates: nitration of electron donation? Free Radic Biol Med 24:594–606PubMedCrossRefGoogle Scholar
  89. 89.
    Arteel GE, Briviba K, Sies H (1999) Protection against peroxynitrite. FEBS Lett 445:226–230PubMedCrossRefGoogle Scholar
  90. 90.
    Cuzzocrea S, Costantino G, Caputi AP (1999) Protective effect of N-acetylcysteine on cellular energy depletion in non-septic shock model induced by zymosan in the rat. Shock 11:143–148PubMedCrossRefGoogle Scholar
  91. 91.
    Szab’o C et al (1998) Protection against peroxynitrite-induced fibroblast injury and arthritis development by inhibition of poly(ADP-ribose) synthase. Proc Natl Acad Sci U S A 95:3867–3872CrossRefGoogle Scholar
  92. 92.
    Endres M et al (1998) Protective effects of 5-iodo-6-amino-1,2-benzopyrone, an inhibitor of poly(ADP-ribose) synthetase against peroxynitrite-induced glial damage and stroke development. Eur J Pharmacol 351:377–382PubMedCrossRefGoogle Scholar
  93. 93.
    Wei T et al (1998) EPC-K1 attenuates peroxynitrite-induced apoptosis in cerebellar granule cells. Biochem Mol Biol Int 46:89–97PubMedGoogle Scholar
  94. 94.
    Spear N et al (1997) Nerve growth factor protects PC12 cells against peroxynitriteinduced apoptosis via a mechanism dependent on phosphatidylinositol 3-kinase. J Neurochem 69:53–59PubMedCrossRefGoogle Scholar
  95. 95.
    Maruyama W, Takahashi T, Naoi M (1998) (-)-Deprenyl protects human dopaminergic neuroblastoma SH-SY5Y cells from apoptosis induced by peroxynitrite and nitric oxide. J Neurochem 70:2510–2515PubMedCrossRefGoogle Scholar
  96. 96.
    Leist M, Fava E, Montecucco C, Nicotera P (1997) Peroxynitrite and nitric oxide donors induce neuronal apoptosis by eliciting autocrine excitotoxicity. Eur J Neurosci 9:1488–1498PubMedCrossRefGoogle Scholar
  97. 97.
    Minetti M, Mallozzi C, Di Stasi AM, Pietraforte D (1998) Bilirubin is an effective antioxidant of peroxynitrite-mediated protein oxidation in human blood plasma. Arch Biochem Biophys 352:165–174PubMedCrossRefGoogle Scholar
  98. 98.
    Szab’o C et al (1997) Mercaptoethylguanidine and guanidine inhibitors of nitric-oxide synthase react with peroxynitrite and protect against peroxynitrite-induced oxidative damage. J Biol Chem 272:9030–9036CrossRefGoogle Scholar
  99. 99.
    Hua LL, Liu JSH, Brosnan CF, Lee SC (1998) Selective inhibition of human glial inducible nitric oxide synthase by interferon-b: Implications for multiple sclerosis. Ann Neurol 48:384–387CrossRefGoogle Scholar
  100. 100.
    Guthikonda P, Baker J, Mattson DH (1998) Interferon-beta-1-b (IFN-B) decreases induced nitric oxide (NO) production by a human astrocytoma cell line. J Neuroimmunol 82:133–139PubMedCrossRefGoogle Scholar
  101. 101.
    Lucas M, Sanchez-Solino O, Solano F, Izquierdo G (1998) Interferon beta-lb inhibits reactive oxygen species production in peripheral blood monocytes of patients with relapsing-remitting multiple sclerosis. Neurochem Int 33:101–102PubMedCrossRefGoogle Scholar
  102. 102.
    Yu ZF, Bruce-Keller AJ, Goodman Y, Mattson MP (1998) Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. J Neurosci Res 53:613–625PubMedCrossRefGoogle Scholar
  103. 103.
    Schlotte V, Sevanian A, Hochstein P, Weithmann KU (1998) Effect of uric acid and chemical analogues on oxidation of human low density lipoprotein in vitro. Free Radic Biol Med 25:839–847PubMedCrossRefGoogle Scholar
  104. 104.
    Halcak L, Rendekova V, Pechan I, Kubaska M (1998) The effect of uric acid, creatine phosphate and carnitine on lipid peroxidation in cerebral cortex and myocardium homogenates. Bratisl Lek Listy 99:343–346PubMedGoogle Scholar
  105. 105.
    Koprowski H, Spitsin SV, Hooper DC (2001) Prospects for the treatment of multiple sclerosis by raising serum levels of uric acid, a scavenger of peroxynitrite. Ann Neurol 49:139PubMedCrossRefGoogle Scholar
  106. 106.
    Starling RD et al (1996) Effect of inosine supplementation on aerobic and anaerobic cycling performance. Med Sci Sports Exerc 28:1193–1198PubMedCrossRefGoogle Scholar
  107. 107.
    Haun SE et al (1996) Inosine mediates the protective effect of adenosine in rat astrocyte cultures subjected to combined glucose-oxygen deprivation. J Neurochem 67:2051–2059PubMedCrossRefGoogle Scholar
  108. 108.
    Litsky ML, Hohl CM, Lucas JH, Jurkowitz MS (1999) Inosine and guanosine preserve neuronal and glial cell viability in mouse spinal cord cultures during chemical hypoxia. Brain Res 821:426–432PubMedCrossRefGoogle Scholar
  109. 109.
    Benowitz LI et al (1999) Inosine stimulates extensive axon collateral growth in the rat corticospinal tract after injury. Proc Natl Acad Sci U S A 96:13486–13490PubMedCrossRefGoogle Scholar
  110. 110.
    Hadlock T et al (1999) A novel, biodegradable polymer conduit delivers neurotrophins and promotes nerve regeneration. Laryngoscope 109:1412–1416PubMedCrossRefGoogle Scholar
  111. 111.
    Hasko G et al (2000) Inosine inhibits inflammatory cytokine production by a post-transcriptional mechanism and protects against endotoxin-induced shock. J Immunol 164:1013–1019PubMedGoogle Scholar
  112. 112.
    Watson CM et al (1991) Suppression of demyelination by mitoxantrone. Int J Immunopharmacal 13:923–930CrossRefGoogle Scholar
  113. 113.
    Gonsette RE, Demonty L (1989) Mitoxantrone: a new immunosuppressive agent in multiple sclerosis. In: Gonsette RE, Delmotte P (eds) Recent advances in multiple sclerosis therapy. Elsevier Science, Amsterdam, pp 161–164Google Scholar
  114. 114.
    Kappos L et al (1990) Mitoxantrone (Mx) in the treatment of rapidly progressive MS: A pilot study with serial gadolinium (Gd)-enhanced MRI. Neurology 40 [Suppl] 1:261Google Scholar
  115. 115.
    Krapf H et al (1995) Serial gadolinium-enhanced magnetic resonance imaging in patients with multiple sclerosis treated with mitoxantrone. Neuroradiology 37:113–119PubMedCrossRefGoogle Scholar
  116. 116.
    Edan G et al (1997) Therapeutic effect of mitoxantrone combined with methylprednisolone in multiple sclerosis: a randomised multicentre study of active disease using MRI and clinical criteria. J Neurol Neurosurg Psychiatry 62:112–118PubMedCrossRefGoogle Scholar
  117. 117.
    La Mantia L et al (1998) Cyclophosphamide in chronic progressive multiple sclerosis: a comparative study. Ital J Neurol Sci 19:32–36PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2004

Authors and Affiliations

  • R. E. Gonsette

There are no affiliations available

Personalised recommendations