Genetic Regulation of Nerve Cell Death/Glial Activation and Protective Effects of Myelin Basic Protein Autoimmune Neurotrophin Production in Mechanically Induced Neurodegeneration

  • F. Piehl
  • O. Lidman
  • T. Olsson
Part of the Topics in Neuroscience book series (TOPNEURO)


The critical pathogenic steps leading to clinical multiple sclerosis (MS) are generally believed to be regulated by several different genes, with five to ten genes theoretically having a major impact on disease susceptibility [1-3]. This is supported by epidemiological data demonstrating a considerable lowering of concordance rates from monozygotic to dizygotic twins [4]. It has been known for approximately 30 years that certain haplotypes of the HLA gene region predispose for MS. In particular, individuals carrying HLA DR2 (DRB1*1501DRB5*0101-DQA1*0102-DQB1*0602) are at higher risk. HLA DR3 provides some risk increase, while in certain populations DR4 may be important [5, 6]. So far the HLA complex remains the only well-established genome region known to influence MS [4, 7-9], in spite of the fact that estimations of the relative genetic risk conveyed by the HLA complex alone vary between 5% and 60% [7, 10, 11]. Notably, no single HLA type seems to exclude MS. It is therefore clear that as yet unidentified genes residing outside the HLA must also be of importance for disease susceptibility in MS.


Multiple Sclerosis Major Histocompatibility Complex Major Histocompatibility Complex Class Experimental Allergic Encephalomyelitis Glial Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Risch N (1990) Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 46:222–228PubMedGoogle Scholar
  2. 2.
    Risch N (1990) Linkage strategies for genetically complex traits. II. The power of affected relative pairs. Am J Hum Genet 46:229–241PubMedGoogle Scholar
  3. 3.
    Risch N (1990) Linkage strategies for genetically complex traits. III. The effect of marker polymorphism on analysis of affected relative pairs [published erratum appears in Am J Hum Genet 1992 51:673–675]. Am J Hum Genet 46:242–253PubMedGoogle Scholar
  4. 4.
    Ebers GC, Bulman DE, Sadovnick AD et al (1986) A population-based study of multiple sclerosis in twins. N Engl J Med 315:1638–1642PubMedCrossRefGoogle Scholar
  5. 5.
    Masterman T, Ligers A, Olsson T, Andersson M, Olerup O, Hillert J (2000) HLA-DR15 is associated with lower age at onset in multiple sclerosis. Ann Neurol 48:211–219PubMedCrossRefGoogle Scholar
  6. 6.
    Marrosu MG, Murru MR, Costa G, Murru R, Muntoni F, Cucca F (1998) DRB1DQA1–DQB1 loci and multiple sclerosis predisposition in the Sardinian population. Hum Mol Genet 7:1235–1237PubMedCrossRefGoogle Scholar
  7. 7.
    Olerup O, Hillert J (1991) HLA class II-associated genetic susceptibility in multiple sclerosis: a critical evaluation. Tissue Antigens 38:1–15PubMedCrossRefGoogle Scholar
  8. 8.
    Sawcer S, Jones H, Feakes R, Gray J, Smaldon N, Chataway J, Robertson N, Clayton D, Goodfellow P, Compston A (1996) A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet 13:464–468PubMedCrossRefGoogle Scholar
  9. 9.
    Haines JL, Ter-Minassian M, Bazyk A et al (1996) A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group. Nat Genet 13:469–471PubMedCrossRefGoogle Scholar
  10. 10.
    Ebers GC, Sadovnick AD (1994) The role of genetic factors in multiple sclerosis susceptibility. J Neuroimmunol 54:1–17PubMedCrossRefGoogle Scholar
  11. 11.
    Haines JL, Terwedow HA, Burgess K, Pericak-Vance MA, Rimmler JB, Martin ER, Oksenberg JR, Lincoln R, Zhang DY, Banatao DR, Gatto N, Goodkin DE, Hauser SL (1998) Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity. The Multiple Sclerosis Genetics Group. Hum Mol Genet 7:1229–1234PubMedCrossRefGoogle Scholar
  12. 12.
    Weissert R, Wallström E, Storch M, Stefferl A, Lorentzen J, Lassmann H, Linington C, Olsson T (1998) MHC haplotype-dependent regulation of MOG-induced EAE in rats. J Clin Invest 102:1265–1273PubMedCrossRefGoogle Scholar
  13. 13.
    Chataway J, Feakes R, Coraddu F, Gray J, Deans J, Fraser M, Robertson N, Broadley S, Jones H, Clayton D, Goodfellow P, Sawcer S, Compston A (1998) The genetics of multiple sclerosis: principles, background and updated results of the United Kingdom systematic genome screen. Brain 121:1869–1887PubMedCrossRefGoogle Scholar
  14. 14.
    Lorentzen JC, Andersson M, Issazadeh S, Dahlman I, Luthman H, Weissert R, Olsson T (1997) Genetic analysis of inflammation, cytokine mRNA expression and disease course of relapsing experimental autoimmune encephalomyelitis in DA rats. J Neuroimmunol 80:31–37PubMedCrossRefGoogle Scholar
  15. 15.
    Kjellén P, Issazadeh S, Olsson T, Holmdahl R (1998) Genetic influence on disease course and cytokine response in relapsing experimental allergic encephalomyelitis. Int Immunol 10:333–340PubMedCrossRefGoogle Scholar
  16. 16.
    Roth MP, Viratelle C, Dolbois L, Delverdier M, Borot N, Pelletier L, Druet P, Clanet M, Coppin H (1999) A genome-wide search identifies two susceptibility loci for experimental autoimmune encephalomyelitis on rat chromosomes 4 and 10. J Immunol 162:1917–1922PubMedGoogle Scholar
  17. 17.
    Dahlman I, Lorentzen J, de Graaf K, Stefferl A, Linington C, Luthman H, Olsson T (1998) Quantitative trait loci disposing for both experimental arthritis and encephalomyelitis in the DA rat; impact on severity of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis and antibody isotype pattern. Eur J Immunol 28:2188–2196PubMedCrossRefGoogle Scholar
  18. 18.
    Dahlman I, Wallstrom E, Weissert R, Storch M, Kornek B, Jacobsson L, Linington C, Luthman H, Lassmann H, Olsson T (1999) Linkage analysis of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in the rat identifies a locus controlling demyelination on chromosome 18. Hum Mol Genet 8:2183–2190PubMedCrossRefGoogle Scholar
  19. 19.
    Dahlman I, Jacobsson L, Lorentzen JC, Glaser A, Luthman H, Olsson T (1999) A genome wide linkage analysis of chronic relapsing experimental autoimmune encephalomyelitis in the rat identifies a major susceptibility locus on chromosome 9. J Immunol 162:2581–2588PubMedGoogle Scholar
  20. 20.
    Baker D, Butler D, Scallon BJ, O’Neill JK, Turk JL, Feldmann M (1994) Control of established experimental allergic encephalomyelitis by inhibition of tumor necrosis factor (TNF) activity within the central nervous system using monoclonal antibodies and TNF receptor-immunoglobulin fusion proteins. Eur J Immunol 24:2040–2048PubMedCrossRefGoogle Scholar
  21. 21.
    Sundvall M, Jirholt J, Yang H, Jansson L, Engström A, Pettersson U, Holmdahl R (1995) Identification of murine loci associated with susceptibility to chronic experimental autoimmune encephalomyelitis. Nature Gen. 10:313–317CrossRefGoogle Scholar
  22. 22.
    Encinas J, Lees M, Sobel R, Symonowicz C, Greer J, Shovlin CL, Weiner H, Seidman C, Seidman J, Kuchroo V (1996) Genetic analysis of susceptibility to experimental autoimmune encephalomyelitis in a cross between SJL/J and B10.S mice. J Immunol 157:2186–2192PubMedGoogle Scholar
  23. 23.
    Butterfield RJ, Sudweeks JD, Blankenhorn EP, Korngold R, Marini JC, Todd JA, Roper RJ, Teuscher C (1998) New genetic loci that control susceptibility and symptoms of experimental allergic encephalomyelitis in inbred mice. J Immunol 161:1860–1867PubMedGoogle Scholar
  24. 24.
    Becker KG, Simon RM, Bailey-Wilson JE, Freidlin B, Biddison WE, McFarland HF, Trent JM (1998) Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc Natl Acad Sci USA 95:9979–9984PubMedCrossRefGoogle Scholar
  25. 25.
    Vyse TJ, Todd JA (1996) Genetic analysis of autoimmune disease. Cell 85:311–318PubMedCrossRefGoogle Scholar
  26. 26.
    Encinas JA, Wicker LS, Peterson LB, Mukasa A, Teuscher C, Sobel R, Weiner HL, Seidman CE, Seidman JG, Kuchroo VK (1999) QTL influencing autoimmune dia-betes and encephalomyelitis map to a 0.15-cM region containing I12 (letter). Nat Genet 21:158–160PubMedCrossRefGoogle Scholar
  27. 27.
    van Walderveen MA, Barkhof F, Hommes OR, Polman CH, Tobi H, Frequin ST, Valk J (1995) Correlating MRI and clinical disease activity in multiple sclerosis: relevance of hypointense lesions on short-TR/short-TE (T1-weighted) spin-echo images. Neurology 45:1684–1690PubMedCrossRefGoogle Scholar
  28. 28.
    Sedgwick JD, Schwender S, Gregersen R, Dorries R, ter Meulen V (1993) Resident macrophages (ramified microglia) of the adult brown Norway rat central nervous system are constitutively major histocompatibility complex class II positive. J Exp Med 177:1145–1152PubMedCrossRefGoogle Scholar
  29. 29.
    Chung IY, Norris JG, Benveniste EN (1991) Differential tumor necrosis factor alpha expression by astrocytes from experimental allergic encephalomyelitis-susceptible and -resistant rat strains. J Exp Med 173:801–811PubMedCrossRefGoogle Scholar
  30. 30.
    Linke A, Male D (1994) Strain-specific variation in constitutive and inducible expression of MHC class II, class I and ICAM-1 on rat cerebral endothelium. Immunology 82:88–94PubMedGoogle Scholar
  31. 31.
    Linke T, Greenwood J, Campbell I, Luthert P, Male DK (1998) Strain specific variation in IFN-gamma inducible lymphocyte adhesion to rat brain endothelial cells. J Neuroimmunol 91:28–32PubMedCrossRefGoogle Scholar
  32. 32.
    Linke AT, Antonopoulos M, Davies DH, Male DK (2000) Strain specific variation in cytokine regulated ICAM-1 expression by rat brain-endothelial cells. J Neuroimmunol 104:10–14PubMedCrossRefGoogle Scholar
  33. 33.
    Popovich PG, Wei P, Stokes BT (1997) Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol 377:443–464PubMedCrossRefGoogle Scholar
  34. 34.
    Kreutzberg GW, Graeber MB, Streit WJ (1989) Neuron-glial relationship during regeneration of motorneurons. Metab Brain Dis 4:81–85PubMedCrossRefGoogle Scholar
  35. 35.
    Aldskogius H, Svensson M (1993) Neuronal and glial responses to axon injury. In: Malhotra SK (ed) Advances in structural biology. JAI Press, Greenwich, Connecticut, pp 191–223.Google Scholar
  36. 36.
    Maehlen J, Schroder H, Klareskog L, Olsson T, Kristensson K (1988) Axotomy induces MHC class I antigen expression on rat nerve cells. Neurosci Lett 92:8–13PubMedCrossRefGoogle Scholar
  37. 37.
    Olsson T, Kristensson K, Ljungdahl A, Maehlen J, Holmdahl R, Klareskog L (1989) Gamma-interferon-like immunoreactivity in axotomized rat motor neurons. J Neurosci 9:3870–3875PubMedGoogle Scholar
  38. 38.
    Streit WJ, Graeber MB, Kreutzberg GW (1989) Expression of Ia antigen on perivascular and microglial cells after sublethal and lethal motor neuron injury. Exp Neurol 105:115–126PubMedCrossRefGoogle Scholar
  39. 39.
    Koliatsos VE, Price WL, Pardo CA, Price DL (1994) Ventral root avulsion: an experimental model of death of adult motor neurons. J Comp Neurol 342:35–44PubMedCrossRefGoogle Scholar
  40. 40.
    Piehl F, Tabar G, Cullheim S (1995) Expression of NMDA receptor mRNAs in rat motoneurons is down-regulated after axotomy. Eur J Neurosci 7:2101–2110PubMedCrossRefGoogle Scholar
  41. 41.
    Piehl F, Lundberg C, Khademi M, Dahlman I, Lorentzen J, Olsson T (1999) NonMHC gene regulation of nerve root injury-induced spinal cord inflammation and neuron death. J Neuroimmunol 101:87–97PubMedCrossRefGoogle Scholar
  42. 42.
    Lorentzen JC, Issazadeh S, Storch M, Mustafa MI, Lassman H, Linington C, Klareskog L, Olsson T (1995) Protracted, relapsing and demyelinating experimental autoimmune encephalomyelitis in DA rats immunized with syngeneic spinal cord and incomplete Freund’s adjuvant. J Neuroimmunol 63:193–205PubMedCrossRefGoogle Scholar
  43. 43.
    Lundberg C, Lidman O, Holmdahl R, Olsson T, Piehl F (2001) Neurodegeneration and glial activation patterns after mechanical nerve injury are differentially regulated by non-MHC genes in congenic inbred rat strains. J Comp Neurol 431:75–87PubMedCrossRefGoogle Scholar
  44. 44.
    Serikawa T, Kuramoto T, Hilbert P et al (1992) Rat gene mapping using PCR-analyzed microsatellites. Genetics 131:701–721PubMedGoogle Scholar
  45. 45.
    Olsson T, Dahlman I, Wallstrom E, Weissert R, Piehl F (2000) Genetics of rat neuroinflammation. J Neuroimmunol 107:191–200PubMedCrossRefGoogle Scholar
  46. 46.
    Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM (1999) Expression profiling using cDNA microarrays. Nat Genet 21:10–14PubMedCrossRefGoogle Scholar
  47. 47.
    Davie CA, Barker GJ, Webb S, Tofts PS, Thompson AJ, Harding AE, McDonald WI, Miller DH (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss [published erratum appears in Brain 1996 119:1415]. Brain 118:1583–1592PubMedCrossRefGoogle Scholar
  48. 48.
    De Stefano N, Matthews PM, Fu L, Narayanan S, Stanley J, Francis GS, Antel JP, Arnold DL (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121:1469–1477PubMedCrossRefGoogle Scholar
  49. 49.
    Lee MA, Blamire AM, Pendlebury S, Ho KH, Mills KR, Styles P, Palace J, Matthews PM (2000) Axonal injury or loss in the internal capsule and motor impairment in multiple sclerosis. Arch Neurol 57:65–70PubMedCrossRefGoogle Scholar
  50. 50.
    Reddy H, Narayanan S, Matthews PM, Hoge RD, Pike GB, Duquette P, Antel J, Arnold DL (2000) Relating axonal injury to functional recovery in MS. Neurology 54:236–239PubMedCrossRefGoogle Scholar
  51. 51.
    Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399PubMedCrossRefGoogle Scholar
  52. 52.
    Trapp B, Peterson J, Ransohoff R, Rudick R, Mørk S, Bø L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285PubMedCrossRefGoogle Scholar
  53. 53.
    Smith T, Groom A, Zhu B, Turski L (2000) Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 6:62–66PubMedCrossRefGoogle Scholar
  54. 54.
    Ben-Nun A, Wekerle H, Cohen IR (1981) The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 11:195–199PubMedCrossRefGoogle Scholar
  55. 55.
    Pettinelli CB, McFarlin DE (1981) Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+2-T lymphocytes. J Immunol 127:1420–1423PubMedGoogle Scholar
  56. 56.
    Olsson T, Zhi WW, Hojeberg B, Kostulas V, Jiang YP, Anderson G, Ekre HP, Link H (1990) Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-gamma. J Clin Invest 86:981–985PubMedCrossRefGoogle Scholar
  57. 57.
    Zhang J, Medaer R, Stinissen P, Hafler D, Raus J (1993) MHC-restricted depletion of human myelin basic protein-reactive T cells by T cell vaccination. Science 261:1451–1454PubMedCrossRefGoogle Scholar
  58. 58.
    Miller SD, Vanderlugt CL, Begolka WS, Pao W, Yauch RL, Neville KL, Katz-Levy Y, Carrizosa A, Kim BS (1997) Persistent infection with Theiler’s virus leads to CNS autoimmunity via epitope spreading. Nat Med 3:1133–1136PubMedCrossRefGoogle Scholar
  59. 59.
    Wang W, Olsson T, Kostulas V, Höjeberg B, Ekre H, Link H (1992) Myelin antigen reactive T cells in cerebrovascular diseases. Clin Exp Immunol 88:157–162PubMedCrossRefGoogle Scholar
  60. 60.
    Olsson T, Diener P, Ljungdahl Å, Höjeberg B, van der Meide P, Kristensson K (1992) Facial nerve transection causes expansion of myelin autoreactive T cells in regional lymph nodes and T cell homing to the facial nucleus. Autoimmunity 13:117–126PubMedCrossRefGoogle Scholar
  61. 61.
    Olsson T, Sun JB, Solders G, Xiao BG, Höjeberg B, Ekre HP, Link H (1993) Autoreactive T and B cell responses to myelin antigens after diagnostic sural nerve biopsy. J Neurol Sci 117:130–139PubMedCrossRefGoogle Scholar
  62. 62.
    Piani D, Spranger M, Frei K, Schaffner A, Fontana A (1992) Macrophage-induced cytotoxicity of N-methyl-o-aspartate receptor positive neurons involves excitatory amino acids rather than reactive oxygen intermediates and cytokines. Eur J Immunol 22:2429–2436PubMedCrossRefGoogle Scholar
  63. 63.
    Giulian D, Corpuz M, Chapman S, Mansouri M, Robertson C (1993) Reactive mononuclear phagocytes release neurotoxins after ischemic and traumatic injury to the central nervous system. J Neurosci Res 36:681–693PubMedCrossRefGoogle Scholar
  64. 64.
    Chao C, Hu S, Molitor T, Shaskan E, Peterson P (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149:2736–2741PubMedGoogle Scholar
  65. 65.
    Chao CC, Hu S, Ehrlich L, Peterson PK (1995) Interleukin-1 and tumor necrosis factor-alpha synergistically mediate neurotoxicity: involvement of nitric oxide and ofNmethyl-D-aspartatereceptors. Brain Behav Immun 9:355–365PubMedCrossRefGoogle Scholar
  66. 66.
    Lee SC, Dickson DW, Liu W, Brosnan CF (1993) Induction of nitric oxide synthase activity in human astrocytes by interleukin-1 beta and interferon-gamma. J Neuroimmunol 46:19–24PubMedCrossRefGoogle Scholar
  67. 67.
    Merrill JE, Ignarro LJ, Sherman MP, Melinek J, Lane TE (1993) Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol 151:2132–2141PubMedGoogle Scholar
  68. 68.
    Talley AK, Dewhurst S, Perry SW, Dollard SC, Gummuluru S, Fine SM, New D, Epstein LG, Gendelman HE, Gelbard HA (1995) Tumor necrosis factor alpha-induced apoptosis in human neuronal cells: protection by the antioxidant N-acetyl-cysteine and the genes bcl-2 and crmA.Mol Cell Biol 15:2359–2366PubMedGoogle Scholar
  69. 69.
    Hammarberg H, Lidman O, Lundberg C, Eltayeb SY, Gielen AW, Muhallab S, Svenningsson A, Linda H, van der Meide PH, Cullheim S, Olsson T, Piehl F (2000) Neuroprotection by encephalomyelitis: rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. J Neurosci 20:5283–5291PubMedGoogle Scholar
  70. 70.
    Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE, Kolbeck R, Hoppe E, Oropeza-Wekerle RL, Bartke I, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld R (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189:865–870PubMedCrossRefGoogle Scholar
  71. 71.
    Kishino A, Ishige Y, Tatsuno T, Nakayama C, Noguchi H (1997) BDNF prevents and reverses adult rat motor neuron degeneration and induces axonal outgrowth. Exp Neurol 144:273–286PubMedCrossRefGoogle Scholar
  72. 72.
    Kobayashi NR, Fan DP, Giehl KM, Bedard AM, Wiegand SJ, Tetzlaff W (1997) BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talphal-tubulin mRNA expression, and promote axonal regeneration. J Neurosci 17:9583–9595PubMedGoogle Scholar
  73. 73.
    Hammond EN, Tetzlaff W, Mestres P, Giehl KM (1999) BDNF, but not NT-3, promotes long-term survival of axotomized adult rat corticospinal neurons in vivo. Neuroreport 10:2671–2675PubMedCrossRefGoogle Scholar
  74. 74.
    Besser M, Wank R (1999) Cutting edge: clonally restricted production of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3 mRNA by human immune cells and Thl/Th2-polarized expression of their receptors. J Immunol 162:6303–6306PubMedGoogle Scholar
  75. 75.
    Novikov L, Novikova L, Kellerth JO (1995) Brain-derived neurotrophic factor promotes survival and blocks nitric oxide synthase expression in adult rat spinal motoneurons after ventral root avulsion. Neurosci Lett 200:45–48PubMedCrossRefGoogle Scholar
  76. 76.
    Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen I, Schwartz M (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5:49–55PubMedCrossRefGoogle Scholar
  77. 77.
    Serpe C, Kohm A, Huppenbauer C, Sanders V, Jones K (1999) Exacerbation of facial motoneuron loss after facial nerve transection in severe combined immunodeficient (scid) mice. J Neurosci 19:RC7Google Scholar
  78. 78.
    Villoslada P, Hauser SL, Bartke I, Unger J, Heald N, Rosenberg D, Cheung SW, Mobley WC, Fisher S, Genain CP (2000) Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of T helper cell type 1 and 2 cytokines within the central nervous system. J Exp Med 191:1799–1806PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2004

Authors and Affiliations

  • F. Piehl
  • O. Lidman
  • T. Olsson

There are no affiliations available

Personalised recommendations