Inflammation, Demyelination, and Axonal Degeneration: Three Aspects of the Pathogenesis of Multiple Sclerosis Revealed by Campath-1H Treatment

  • A. J. Coles
  • M. G. Wing
  • P. Molyneux
  • A. Paolillo
  • C. M. Davie
  • G. Hale
  • D. Miller
  • H. Waldmann
  • A. Compston
Part of the Topics in Neuroscience book series (TOPNEURO)


It is hard to account for all the features of multiple sclerosis by episodes of demyelination and remyelination alone: the rapidity of recovery from a relapse, for instance, or the transition from relapsing-remitting disease to progressive accumulation of disability. Here, we report observation from the close study of a small number of patients treated with an experimental agent, Campath-1H, that cast some light on these issues.


Multiple Sclerosis Expand Disability Status Scale Axonal Degeneration Secondary Progressive Multiple Sclerosis Acute Optic Neuritis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benjamin RJ, Waldmann H (1986) Induction of tolerance by monoclonal antibody therapy. Nature 320:449–451PubMedCrossRefGoogle Scholar
  2. 2.
    Qin S, Cobbold SP, Pope H, Helliott J, Kioussis D, Davies J et al (1993) ‘Infectious’ transplantation tolerance. Science 259:974–977PubMedCrossRefGoogle Scholar
  3. 3.
    Moreau T, Thorpe J, Miller D, Moseley I, Hale G, Waldmann H et al (1994) Preliminary evidence from magnetic resonance imaging for reduction in disease activity after lymphocyte depletion in multiple sclerosis [published erratum apears in Lancet (1994) 486]. Lancet 344:298–301PubMedCrossRefGoogle Scholar
  4. 4.
    Moreau T, Coles A, Wing M, Isaacs J, Hale G, Waldmann H et al (1996) Transient increase in symptoms associated with cytokine release in patients with multiple sclerosis. Brain 119:225–237PubMedCrossRefGoogle Scholar
  5. 5.
    Charpentier B, Hiesse C, Lantz O, Ferran C, Stephens S, O’Shaugnessy D et al (1992) Evidence that antihuman tumor necrosis factor monoclonal antibody prevents OKT3-induced acute syndrome. Transplantation 54:997–1002PubMedCrossRefGoogle Scholar
  6. 6.
    Coles AJ, Wing M, Molyneux P, Paolillo A, Davies C, Hale G, Miller d, Waldmann H, Compston A (1999) Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol 46:296–304PubMedCrossRefGoogle Scholar
  7. 7.
    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452PubMedCrossRefGoogle Scholar
  8. 8.
    Branch DR, Shah A, Guilbert LJ (1991) A specific and reliable bioassay for the detection of femtomolar levels of human and murine tumor necrosis factors. J Immunol Methods 143:251–261PubMedCrossRefGoogle Scholar
  9. 9.
    Hay H, Cohen J (1989) Studies on the specificity of the L929 cell bioassay for the measurement of tumour necrosis factor. J Clin Lab Immunol 29:151–155PubMedGoogle Scholar
  10. 10.
    Losseff NA, Wang L, Lai HM, Yoo DS, Gawne Cain ML, McDonald WI et al (1996) Progressive cerebral atrophy in multiple sclerosis. A serial MRI study. Brain 119:2009–2019PubMedCrossRefGoogle Scholar
  11. 11.
    Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC et al (1983) New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 13:227–231PubMedCrossRefGoogle Scholar
  12. 12.
    Youl BD, Turano G, Miller DH, Towell AD, MacManus DG, Moore SG et al (1991) The pathophysiology of acute optic neuritis. An association of gadolinium leakage with clinical and electrophysiological deficits. Brain 114:2437–2450PubMedCrossRefGoogle Scholar
  13. 13.
    Redford EJ, Kapoor R, Smith KJ (1997) Nitric oxide donors reversibly block axonal conduction:demyelinated axons are especially susceptible. Brain 120:2149–2157PubMedCrossRefGoogle Scholar
  14. 14.
    Stone LA, Frank JA, Albert PS, Bash CN, Calabresi PA, Maloni H et al (1997) Characterization of MRI response to treatment with interferon beta-lb: contrast-enhancing MRI lesion frequency as a primary outcome measure. Neurology 49:862–869PubMedCrossRefGoogle Scholar
  15. 15.
    Rudge P, Miller D, Crimlisk H, Thorpe J (1995) Does interferon beta cause initial exacerbation of multiple sclerosis? (letter) Lancet 345:580PubMedCrossRefGoogle Scholar
  16. 16.
    Stone LA, Albert PS, Smith ME, De Carli C, Armstrong MR, McFarlin DE et al (1995) Changes in the amount of diseased white matter over time in patients with relapsing-remitting multiple sclerosis. Neurology 45:1808–1814PubMedCrossRefGoogle Scholar
  17. 17.
    Molyneux PD, Filippi M, Barkhof F, Gasperini C, Yousry TA, Truyen L et al (1998) Correlations between monthly enhanced MRI lesion rate and changes in T2 lesion volume in multiple sclerosis. Ann Neurol 43:332–339PubMedCrossRefGoogle Scholar
  18. 18.
    Hawkins CP, Mackenzie F, Tofts P, du Boulay EP, McDonald WI (1991) Patterns of blood-brain barrier breakdown in inflammatory demyelination. Brain 114:801–810PubMedCrossRefGoogle Scholar
  19. 19.
    Katz D, Taubenberger JK, Cannella B, McFarlin DE, Raine CS, McFarland HF (1993) Correlation between magnetic resonance imaging findings and lesion development in chronic, active multiple sclerosis. Ann Neurol 34:661–669PubMedCrossRefGoogle Scholar
  20. 20.
    Bruck W, Bitsch A, Kolenda H, Bruck Y, Stiefel M, Lassmann H (1997) Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42:783–793PubMedCrossRefGoogle Scholar
  21. 21.
    Molyneux PD, Kappos L, Polman C, Pozzilli C, Barkhof F, Filippi M, Yousry T, Hahn D, Wagner K, Ghazi M, Beckmann K, Dahlke F, Losseff N, Barker GJ, Thompson AJ, Miller DH (2000) The effect of interferon beta-lb treatment on MRI measures of cerebral atrophy in secondary progressive multiple sclerosis. European Study Group on interferon beta-lb in secondary progressive multiple sclerosis. Brain 123:2256–2263PubMedCrossRefGoogle Scholar
  22. 22.
    Rudick RA, Fisher E, Lee JC, Simon J, Jacobs L (1999) Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Multiple Sclerosis Collaborative Research Group. Neurology 53:1698–1704PubMedCrossRefGoogle Scholar
  23. 23.
    Ferguson B, Matyszak MK, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399PubMedCrossRefGoogle Scholar
  24. 24.
    Trapp BD, Peterson J, Ransohoff RM, Rudick RA, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285PubMedCrossRefGoogle Scholar
  25. 25.
    Coles A, Wing M, Smith S, Corradu F, Greer S, Taylor C, Weetman A, Hale G, Chatterjee VK, Waldmann H, Compston A (1999) Pulsed monoclonal antibody treatment modulates T cell responses in multiple sclerosis but induces autoimmune thyroid disease. Lancet 354:1691–1695PubMedCrossRefGoogle Scholar
  26. 26.
    Colello RJ, Pott U, Schwab ME (1994) The role of oligodendrocytes and myelin on axon maturation in the developing rat retinofugal pathway. J Neurosci 14:2594–2605PubMedGoogle Scholar
  27. 27.
    Kaplan MR, Meyer Franke A, Lambert S, Bennett V, Duncan ID, Levinson SR et al (1997) Induction of sodium channel clustering by oligodendrocytes. Nature 386:724–728PubMedCrossRefGoogle Scholar
  28. 28.
    Meyer Franke A, Kaplan MR, Pfrieger FW, Barres BA (1995) Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15:805–819PubMedCrossRefGoogle Scholar
  29. 29.
    Pfrieger FW, Barres BA (1997) Synaptic efficacy enhanced by glial cells in vitro. Science 277:1684–1687PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2004

Authors and Affiliations

  • A. J. Coles
  • M. G. Wing
  • P. Molyneux
  • A. Paolillo
  • C. M. Davie
  • G. Hale
  • D. Miller
  • H. Waldmann
  • A. Compston

There are no affiliations available

Personalised recommendations