Advertisement

A Possible Way to Define an Effective Cosmological Constant in Scalar-Tensor Cosmologies

  • S. Capozziello
  • R. de Ritis
  • A. A. Marino
  • C. Rubano
  • P. Scudellaro
Conference paper

Abstract

The cosmological constant has attained a leading role in recent researches in cosmology. We extend the cosmic no-hair theorem to non-minimally coupled theories of gravity where ordinary matter is also present in the form of a perfect fluid. To achieve this goal we give a set of conditions for obtaining the asymptotic de Sitter expansion independently of any initial data (no fine-tuning problem), that is, we introduce a time-dependent (effective) cosmological constant. Finally, we apply the results to some specific models.

Keywords

Cosmological Constant Bianchi Identity Ordinary Matter Effective Cosmological Constant Repulsive Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fort B., Mellier Y. (2000): Gravitational Lensing anf the Test of the Cosmological Constant, in Proc. of the VI Colloque de Cosmologie, June 4–6, 1997, in pressGoogle Scholar
  2. 2.
    Riess A.G., Filippenko A.V., Challis P. (1998): Astron. J. 116, 1009ADSCrossRefGoogle Scholar
  3. 3.
    Pelmutter S., Alderling G, Goldhaber G. (1999): Astrophys. J. 517, 565ADSCrossRefGoogle Scholar
  4. 4.
    Krauss L.M., Turner M.S. (1995): General Relativity and Gravitation 27, 1137ADSMATHCrossRefGoogle Scholar
  5. 5.
    Wald R.M. (1983): Phys. Rev. D 28, 2118MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Bergmann P.G. (1968): Int. Journ. Theor. Phys. 1, 25CrossRefGoogle Scholar
  7. 7.
    Sciama D.W. (1953): Mon. Not. R. Astrom. Soc. 113, 34; Brans C, Dicke R.H. (1961): Phys. Rev. 124, 925; Zee A. (1979): Phys. Rev. Lett. 42, 417; Smolin L. (1979): Nucl. Phys. B 160, 253; Adler S. (1980): Phys. Rev. Lett. 44, 1567MathSciNetADSMATHGoogle Scholar
  8. 8.
    Capozziello S., de Ritis R., Rubano C, Scudellaro P. (1996): La Rivista del Nuovo Cimento 4, 1CrossRefGoogle Scholar
  9. 9.
    Hoyle F., Narlikar J.V. (1963): Proc. R. Soc. A 273, 1MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Cotsakis S., Flessas G. (1993): Phys. Lett. B 319, 69; Burd A.B., Barrow J.D. (1988): Nucl. Phys. B 308, 929; Yokogawa J., Maeda K. (1988): Phys. Lett. B 207, 31; Barrow J.D., Götz, G. (1989): Phys. Lett. B 231, 228MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Pimentel L.O., Stein-Schabes J. (1989): Phys. Lett. B 216, 27ADSCrossRefGoogle Scholar
  12. 12.
    Capozziello S., de Ritis R. (1996): Int. Journ. Mod. Phys. D 5, 209ADSCrossRefGoogle Scholar
  13. 13.
    Capozziello S., de Ritis, R. (1993): Phys. Lett. A 117, 1; Capozziello S., de Ritis, R. (1994): Class. Quantum Grav. 11, 107; Capozziello S., de Ritis R., Scudellaro P. (1994): Phys. Lett. A 188, 130ADSCrossRefGoogle Scholar
  14. 14.
    Capozziello S., de Ritis R. (1997): Gen. Relativ. Grav. 29, 1425; Capozziello S., de Ritis R., Marino A. A. (1998): Gen. Relativ. Grav. 30, 1247ADSMATHCrossRefGoogle Scholar
  15. 15.
    Capozziello S., de Ritis R. (1995): Phys. Lett. A 208, 181MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • S. Capozziello
  • R. de Ritis
  • A. A. Marino
  • C. Rubano
  • P. Scudellaro

There are no affiliations available

Personalised recommendations