Skip to main content

Canonical “Loop” Quantum Gravity and Spin Foam Models

  • Conference paper
Recent Developments in General Relativity
  • 393 Accesses

Abstract

The canonical “loop” formulation of quantum gravity is a mathematically well defined, background independent, non-perturbative standard quantization of Einstein’s theory of General Relativity. Some of the most meaningful results of the theory are: 1) the complete calculation of the spectrum of geometric quantities like area and volume and the consequent physical predictions about the structure of space-time at the Planck scale; 2) a microscopical derivation of the Bekenstein-Hawking black-hole entropy formula. Unfortunately, despite recent results, the dynamical aspect of the theory (imposition of the Weller-De Witt constraint) remains elusive.

After a short description of the basic ideas and the main results of loop quantum gravity we show in which sense the exponential of the super-Hamiltonian constraint leads to the concept of spin foam and to a four dimensional formulation of the theory. Moreover, we show that some topological field theories as the BF theory in 3 and 4 dimensions admits a spin foam formulation. We argue that the spin-foam/spin-network formalism it is the natural framework in which to discuss loop quantum gravity and topological field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rovelli C, Smolin L. (1988): Knot theory and quantum gravity, Phys. Rev. Lett. 61, 1155

    Article  MathSciNet  ADS  Google Scholar 

  2. Rovelli C, Smolin L. (1990): Loop space representation of quantum general relativity. Nucl. Phys. B 331, 80

    Article  MathSciNet  ADS  Google Scholar 

  3. Rovelli C. (1998): Strings, Loops and Others: A Critical Survey of the Present Approaches in to Quantum Gravity, in Gravitation and Relativity: At the Turn of the Millennium (Pune, India), ed. by N. Dadhich, J. Narlikar, Proc. GR 15 Conference, I.U.C.A.A., December 16–21, p. 281

    Google Scholar 

  4. Rovelli C. (1998): Loop Quantum Gravity in Living Reviews in Relativity, 1998-1. Elecronic publications of the Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Potsdam, http://www.livingreviews.Org//Articles/Volumel/1998-lrovelli/

    Google Scholar 

  5. Ashtekar A., Isham C. J. (1992): Inequivalent observable algebras: another ambiguity in field quantization. Phys. Lett. B 274, 393–398

    Article  MathSciNet  ADS  Google Scholar 

  6. Ashtekar A., Lewandowski J. (1995): Differential geometry on the space of connections via graphs and projective limits. J. Geom. Phys. 17, 191

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Baez J.C. (1994): Generalized measures in gauge theory. Lett. Math. Phys. 31, 213–224

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Rovelli C, Smolin L. (1995): Spin networks and quantum gravity. Phys. Rev. D 52, 5743–5759

    Article  MathSciNet  ADS  Google Scholar 

  9. Ashtekar A., Lewandowski J., Marolf D., Mourao J., Thiemann T. (1995): Quantization of diffeomorphism invariant theories of connections with local degrees of freedom. J. Math. Phys. 36, 6456–6493

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Rovelli C, Smolin L. (1995): Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442, 593–622, (1995) erratum, (1995): Nucl. Phys. B 442

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. De Pietri R., Rovelli C. (1996): Geometry eigenvalues and scalar product from recoupling theory in loop quantum gravity. Phys. Rev. D 54, 2664–2690

    Article  MathSciNet  ADS  Google Scholar 

  12. Ashtekar A., Lewandowski J. (1997): Quantum theory of geometry. 1: Area operators. Class. Quant. Grav. A 14, 55–82

    Article  MathSciNet  ADS  Google Scholar 

  13. Ashtekar A., Lewandowski J. (1998): Quantum theory of geometry. 2. Volume operators. Adv. Theor. Math. Phys. 1, 388

    MathSciNet  Google Scholar 

  14. Rovelli C. (1996): Black hole entropy from loop quantum gravity. Phys. Rev. Lett. 77, 3288

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Barreira M., Carfora M., Rovelli C. (1996): Physics with nonperturbative quantum gravity: radiation from a quantum black hole. Gen. Rel. Grav. 28, 1293

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Krasnov K.V (1997): Geometrical entropy from loop quantum gravity. Phys. Rev. D 55, 3505–3513

    Article  MathSciNet  ADS  Google Scholar 

  17. Ashtekar A., Baez J., Corichi A., Krasnov K. (1998): Quantum geometry and black hole entropy. Phys. Rev. Lett. 80, 904–907

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Reisenberger M.P., Rovelli C. (1997): ’sum over surfaces’ form of loop quantum gravity. Phys. Rev. D 56, 3490–3508

    Article  MathSciNet  ADS  Google Scholar 

  19. Baez J.C. (1998): Spin foam models. Class. Quant. Grav. 15, 1827

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Reisenberger M.P. (1994): World sheet formulations of gauge theories and gravity, gr-qc/9412035

    Google Scholar 

  21. Ambjorn J., Carfora M., Marzuoli A. (1997): The geometry of Dynamical Triangulations. Lecture Notes in Physics, Vol. 50, Springer Berlin Heidelberg New York

    Google Scholar 

  22. Ooguri H., Sasakura N. (1991): Discrete and continuum approaches to three-dimensional quantum gravity. Mod. Phys. Lett. A 6, 591–3600

    Article  MathSciNet  Google Scholar 

  23. Ooguri H. (1992): Partition functions and topology changing amplitudes in the 3-d lattice gravity of Ponzano and Regge. Nucl. Phys. B 382, 276–304

    Article  MathSciNet  ADS  Google Scholar 

  24. Archer F., Williams R.M. (1991): The Tauraev-Viro state sum model and three-dimensional quantum gravity. Phys. Lett. B 273, 438–444

    Article  MathSciNet  ADS  Google Scholar 

  25. Witten E. (1988): Topological quantum field theory. Commun. Math. Phys. 117, 353

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Witten E. (1988): (2+1)-dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 46

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Witten E. (1988): Topological gravity. Phys. Lett. B 206, 601

    Article  MathSciNet  ADS  Google Scholar 

  28. Witten E. (1989): Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Witten E. (1989): Topology changing amplitudes in (2+1)-dimensional gravity. Nucl. Phys. B 323, 113

    Article  MathSciNet  ADS  Google Scholar 

  30. Ponzano G., Regge T. (1968) Semiclassical Limit of Racach Coefficients, in Spetroscopy and group theoretical methods in Physics, ed. by F. Bloch, North-Holland, Amsterdam, pp. 1–58

    Google Scholar 

  31. Turaev V.G., Viro O.Y. (1992): State sum invariant of 3-manifolds and quantum 6j-symbols. Topology 31(4), 865–902

    Article  MathSciNet  MATH  Google Scholar 

  32. Ooguri H. (1992): Topological lattice models in four-dimensions. Mod. Phys. Lett. A 7, 2799–2810

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Crane L., Kauffman L.H., Yetter D.N. (1997): State-sum invariants of 4-manifolds. J. Knot Theory Ramifications 6(2), 177–234, hep-th/9409167

    Article  MathSciNet  MATH  Google Scholar 

  34. Carter J.S., Kauffman L.H., Saito M. (1998): Structures and diagrammatics of four-dimensional topological lattice field theories. math.GT/9806023

    Google Scholar 

  35. Barrett J.W., Crane L. (1998): Relativistic spin networks and quantum gravity. J. Math. Phys. 39, 3296–3302

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Plebanski J. (1977): On the separations of Einteinian substructure. J. Math. Phys. 18, 2511

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. De Pietri R., Freidel L., (1999): SO(4) Plebanski action and relativistic spin foam model. Class. Quant. Grav. 16, 2187–2196

    Article  ADS  MATH  Google Scholar 

  38. Reisenberger M.P. (1999): Classical Euclidean general relativity from ‘lefthanded area = righthanded area’. Class. Quant. Grav. 16, 1357–1371

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Reisenberger M.R (1997): A lattice world sheet sum for 4-d Euclidean general relativity, gr-qc/9711052

    Google Scholar 

  40. Reisenberger M.P. (1995): New constraints for canonical general relativity. Nucl. Phys. B 457, 643–687

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Reisenberger M.P. (1997): A lefthanded simplicial action for Euclidean general relativity. Class. Quant. Grav. 14, 1753

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Horowitz G.T. (1989): Exactly soluble diffeomorphism invariant theories. Comm. Math. Phys. 125, 417

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Freidel L., Krasnov K. (1999): Spin foam models and the classical action principle. Adv. Theor. Math. Phys. 2, 1183–1247

    MathSciNet  Google Scholar 

  44. Rourke CP, Sanderson B.J. (1972): Introduction to Picewise-Linear Topology. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  45. Zapata J.A. (1998): Combinatorial space from loop quantum gravity. Gen. Rel. Grav. 30, 1229

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Zapata J. A. (1997): A combinatorial approach to diffeomorphism invariant quantum gauge theories. J. Math. Phys. 38, 5663–5681

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Kauffman L.H., Lins S. L. (1994): Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds. Princeton University Press, Princeton

    MATH  Google Scholar 

  48. De Pietri R. (1997): On the relation between the connection and the loop representation of quantum gravity. Class. Quant. Grav. 14, 53–70

    Article  ADS  MATH  Google Scholar 

  49. Penrose R. (1971): Application of Negative Dimensional Tensors, in Combinatorial Mathematics and its Applications, ed. by D.J. Welsh, Academic Press, London, pp. 221–243

    Google Scholar 

  50. Ashtekar A. (1986): New variables for classical and quantum gravity. Phys. Rev. Lett. 57, 2244

    Article  MathSciNet  ADS  Google Scholar 

  51. Barbero J.F. (1995): Real Ashtekar variables for Lorentzian signature space times. Phys. Rev. D 51, 5507–5510

    Article  MathSciNet  ADS  Google Scholar 

  52. Barbero J.F (1996): From Euclidean to Lorentzian general relativity: the real way. Phys. Rev. D 54, 1492–1499

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Thiemann T. (1996): Anomaly — free formulation of nonperturbative, four-dimensional Lorentzian quantum gravity. Phys. Lett. B 380, 257–264

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Thiemann T. (1998): Quantum spin dynamics (QSD). Class. Quant. Grav. 15, 839

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. Thiemann T. (1998): Quantum spin dynamics (QSD). II. Class. Quant. Grav. 15, 875

    Article  MathSciNet  ADS  Google Scholar 

  56. Borissov R., De Pietri R., Rovelli C. (1997): Matrix elements of Thiemann’s Hamiltonian Constraint in Loop Quantum Gravity, Class. Quant. Grav. 14, 2793

    Article  ADS  MATH  Google Scholar 

  57. Thiemann T. (1998): Quantum spin dynamics (QSD). III. Quantum constraint algebra and physical scalar product in quantum general relativity. Class. Quant. Grav. 15, 1207

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. Rovelli C. (1998): The projector on physical states in loop quantum gravity. Phys. Rev. D 59, 104015

    Article  MathSciNet  ADS  Google Scholar 

  59. Carbone G., Carfora M., Marzuoli A. (1998): Wigner symbols and combinatorial invariants of 3-manifolds with boundary. SISSA Preprint 118/98/FM

    Google Scholar 

  60. Atiyah M. (1989): Topological quantum field theories. Publ. Math. IHES 68, 175–186

    Google Scholar 

  61. Yetter D.N. (1998): Generalised Barrett-Crane vertices and invariants of embedded graphs. math.QA/9801131

    Google Scholar 

  62. De Pietri R., Freidel L., Krasnov K., Rovelli C. (1999): Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space. Nucl. Phys. B, in press, hepth/9907154

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Italia

About this paper

Cite this paper

De Pietri, R. (2000). Canonical “Loop” Quantum Gravity and Spin Foam Models. In: Casciaro, B., Fortunato, D., Francaviglia, M., Masiello, A. (eds) Recent Developments in General Relativity. Springer, Milano. https://doi.org/10.1007/978-88-470-2113-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2113-6_6

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0068-1

  • Online ISBN: 978-88-470-2113-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics